首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of pH on the production of citric and gluconic acid, from beet molasses byAspergillus niger, was studied using continuous culture. At pH values above 2.5 gluconic acid was the major product, citric acid being the predominant product at low pH values. The optimum specific activities of citrate synthase, aconitase, NAD-linked isocitrate dehydrogenase, and NADP-linked isocitrate dehydrogenase occurred at pH 4 and of glucose oxidase at pH 5.  相似文献   

2.
AIMS: Analysis of regulators for modulated gluconic acid production under surface fermentation (SF) condition using grape must as the cheap carbohydrate source, by mutant Aspergillus niger ORS-4.410. Replacement of conventional fermentation condition by solid-state surface fermentation (SSF) for semi-continuous production of gluconic acid by pseudo-immobilization of A. niger ORS-4.410. METHODS AND RESULTS: Grape must after rectification was utilized for gluconic acid production in batch fermentation in SF and SSF processes using mutant strain of A. niger ORS-4.410. Use of rectified grape must led to the improved levels of gluconic acid production (80-85 g l(-1)) in the fermentation medium containing 0.075% (NH4)2HPO4; 0.1% KH2PO4 and 0.015% MgSO4.7H2O at an initial pH 6.6 (+/-0.1) under surface fermentation. Gluconic acid production was modulated by incorporating the 2% soybean oil, 2% starch and 1% H2O2 in fermentation medium at continuously high aeration rate (2.0 l min(-1)). Interestingly, 95.8% yield of gluconic acid was obtained when A. niger ORS-4.410 was pseudo-immobilized on cellulose fibres (bagasse) under SSF. Four consecutive fermentation cycles were achieved with a conversion rate of 0.752-0.804 g g(-1) of substrate into gluconic acid under SSF. CONCLUSIONS: Use of additives modulated the gluconic acid production under SF condition. Semi-continuous production of gluconic acid was achieved with pseudo-immobilized mycelia of A. niger ORS-4.410 having a promising yield (95.8%) under SSF condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The bioconversion of grape must into modulated gluconic acid production under SSF conditions can further be employed in fermentation industries by replacing the conventional carbohydrate sources and expensive, energy consuming fermentation processes.  相似文献   

3.
Certain cost-effective carbohydrate sources in crude as well as after purification were utilized as the sole sources of carbon for gluconic acid production using Aspergillus niger ORS-4.410 under submerged fermentation. Crude grape must (GM) and banana-must (BM) resulted into significant levels of gluconic acid production i.e. 62.6 and 54.6 g/l, respectively. The purification of grape and banana-must led to a 20–21% increase in gluconic acid yield. Molasses as such did not favour gluconate production (12.0 g/l) but a significant increase in production (60.3 g/l) was observed following hexacyanoferrate (HCF) treatment of the molasses. Rectified grape must (RGM) appeared to be best suitable substrate which after 144 h resulted in 73.2 g of gluconic acid/l with 80.6% yield followed by the yield obtained from the rectified banana must (RBM) (72.4%) and treated cane molasses (TM) (61.3%). Abundant growth of mould A. niger ORS-4.410 was observed with crude grape (0.131 g/l/h) and banana must (0.132 g/l/h).  相似文献   

4.
Spores of Aspergillus niger obtained by solid state fermentation on buckwheat seeds produced gluconic acid from glucose with a high yield, near 1.06 g gluconic acid/g glucose, close to the stoichiometric value. The reaction itself could be carried out either with purified biocatalyst or with the whole buckwheat medium resulting from spore production process. 200 g gluconic acid/L were obtained in 200 h with sequential feedings of glucose up to 190 g/L.  相似文献   

5.
Summary One strain each of the fungus,Aspergillus niger, and the yeast,Saccharomycopsis lipolytica, were investigated for their ability to produce citric acid from the sugars present in hemicellulose hydrolysates.S. lipolytica produced citric acid as efficiently from mannose as from glucose, but failed to assimilate xylose, arabinose or galactose.A. niger readily assimilated mannose, xylose and arabinose, and produced citric acid from these sugars although the yields were lower than from glucose. A possible inhibitory effect of arabinose on citric acid production from other sugars was observed usingA. niger.  相似文献   

6.
Summary The influence of various carbon sources and their concentration on the production of citrate by Aspergillus niger has been investigated. The sugars maltose, sucrose, glucose, mannose and fructose (in the given order) were carbon sources giving high yields of citric acid. Optimal yields were observed at sugar concentrations of 10% (w/v), with the exception of glucose (7.5%). No citric acid was produced on media containing less than 2.5% sugar. Precultivation of A. niger on 1% sucrose and transference to a 14% concentration of various other sugars induced citrate accumulation. This could be blocked by the addition of cycloheximide, an inhibitor of de novo protein synthesis. This induction was achieved using maltose, sucrose, glucose, mannose and fructose, and also by some other carbon sources (e.g. glycerol) that gave no citric acid accumulation in direct fermentation. Precultivation of A. niger at high (14%) sucrose concentrations and subsequent transfer to the same concentrations of various other carbohydrates, normally not leading to citric acid production, led to formation of citrate. Endogenous carbon sources were also converted to citrate under these conditions. A 14%-sucrose precultivated mycelium continued producing some citrate upon transfer to 1% sugar. These results indicate that high concentrations of certain carbon sources are required for high citrate yields, because they induce the appropriate metabolic imbalance required for acidogenesis.  相似文献   

7.
Acetobacter xylinum 1FO 13693 was selected as the best cellulose-producing bacterium among 41 strains belonging to the genus Acetobacter and Agrobacterium. Cellulose was found to be produced at the liquid surface in static liquid cultivation. The rate of cellulose production depended proportionally on the surface-area of the culture medium and was unaffected by the depth and volume of the medium. The optimum pH for cellulose production was 4.0 to 6.0. Glucose, fructose and glycerol were preferred carbon sources for cellulose production. The yield of cellulose, relative to the glucose consumed, decreased with an increase in initial glucose concentration, and gluconic acid accumulated at a high initial glucose concentration. The decrease in cellulose yield could be due to some glucose being metabolized to gluconic acid. However, the accumulated gluconic acid did not affect cellulose production. The culture conditions of the bacterium for cellulose production were optimized. The maximum production rate of cellulose was 36 g/d·m2, with a yield of 100% for added glucose under the optimal conditions.  相似文献   

8.
Summary Zymomonas mobilis is able to convert glucose and fructose to gluconic acid and sorbitol. The enzyme, glucose-fructose oxidoreductase, catalysing the intermolecular oxidation-reduction of glucose and fructose to gluconolactone and sorbitol, was formed in high amounts [1.4 units (U)·mg-1] when Z. mobilis was grown in chemostats with glucose as the only carbon source under non-carbon-limiting conditions. The activity of a gluconolactone-hydrolysing lactonase was constant at 0.2 U·mg-1. Using glucose-grown cells for the conversion of equimolar fructose and glucose mixtures up to 60% (w/v), a maximum product concentration of only 240 g·1-1 of sorbitol was found. The gluconic acid accumulated was further metabolized to ethanol. After permeabilizing the cells using cationic detergents, maximum sorbitol and gluconic acid concentrations of 295 g·1-1 each were reached; no ethanol production occurred. In a continuous process with -carrageenan-immobilized and polyethylenimin-hardened, permeabilized cells no significant decrease in the conversion yield was observed after 75 days. The specific production rates for a high yield conversion ( > 98%) in a continuous two-stage process were 0.19 g·g-1·h-1 for sorbitol and 0.21 g·g-1·h-1 for gluconic acid, respectively. For the sugar conversion of cetyltrimethylammonium bromide-treated -carrageenan-immobilized cells a V max of 1.7 g·g-1·h-1 for sorbitol production and a K m of 77.2 g·1-1 were determinedOffprint requests to: B. Rehr  相似文献   

9.
The influence of substrate composition on the yield, nature, and composition of exopolysaccharides (EPS) produced by the food-grade strain Gluconacetobacter xylinus I-2281 was investigated during controlled cultivations on mixed substrates containing acetate and either glucose, sucrose, or fructose. Enzymatic activity analysis and acid hydrolysis revealed that two EPS, gluconacetan and levan, were produced by G. xylinus. In contrast to other acetic acid strains, no exocellulose formation has been measured. Considerable differences in metabolite yields have been observed with regard to the carbohydrate source. It was shown that glucose was inadequate for EPS production since most of this substrate (0.84 C-mol/C-mol) was oxidized into gluconic acid, 2-ketogluconic acid, and 5-ketogluconic acid. In contrast, sucrose and fructose supported a 0.35 C-mol/C-mol gluconacetan yield. In addition, growing G. xylinus on sucrose produced a 0.07 C-mol/C-mol levan yield. The composition of EPS remained unchanged during the course of the fermentations. Levan sucrase activity was found to be mainly membrane associated. In addition to levan production, an analysis of levan sucrase's activity also explained the formation of glucose oxides during fermentation on sucrose through the release of glucose. The biosynthetic pathway of gluconacetan synthesis has also been explored. Although the activity of key enzymes showed large differences to be a function of the carbon source, the ratio of their activities remained similar from one carbon source to another and corresponded to the ratio of precursor needs as deduced from the gluconacetan composition.  相似文献   

10.
The purpose of the present study was to ascertain the optimal concentration of dissolved oxygen in order to maximize the intracellular glucose oxidase formation in Aspergillus niger. Cultivations performed in a 3.5 l laboratory reactor showed that a dissolved oxygen concentration at 3% of saturation at a total pressure of 1.2 bar was optimal for maximizing intracellular glucose oxidase activity. Cultivations performed at higher dissolved oxygen concentrations did not produce as much glucose oxidase as those performed at 3%, although the formation rate was high. Experiments revealed that maximal intracellular glucose oxidase formation for the A. niger strain used, is accomplished by limiting the gluconic acid production rate by means of maintaining a low dissolved oxygen concentration. Several attempts to achieve higher intracellular glucose oxidase activity were also made by manipulating the glucose concentration at a 3% dissolved oxygen concentration. However, no enhancement in glucose oxidase activity was observed.  相似文献   

11.
Summary The production of sorbitol and gluconic acid by toluene-treated, permeabilized cells of Zymomonas mobilis has been evaluated. From a 60% total sugar solution (300 g/l glucose and 300 g/l fructose), a sorbitol concentration of 290 g/l and a gluconic acid concentration of 283 g/l were achieved after 15 h in a batch process using free toluene-treated cells. A continuous process with immobilized cells was developed and only a small loss of enzyme activity (less than 5%) was evident after 120 h. With a strongly basic anion exchange resin and an eluent of 0.11 M Na2B4O7/0.11 M H3BO3, good separation of sorbitol and gluconic acid was achieved.  相似文献   

12.
Zhou JM  Ge XY  Zhang WG 《Bioresource technology》2011,102(21):10085-10088
Catabolic repression in the synthesis of inducible enzymes by glucose, fructose, and intermediates of the glycolytic cycle has been observed in many microorganisms. In order to enhance the polygalacturonase (PG) production of Aspergillus niger GJ-2, Saccharomyces cerevisiae J-1 was inoculated to the medium at 12 h of culture, which resulted in a significant improvement of PG production. It was also found that maximum PG activity of 512.7 U/ml was obtained at 37 °C in the mixed culture, which was nearly twofold higher than that of the culture without the inoculation of S. cerevisiae J-1.  相似文献   

13.
Hang  Y. D.  Woodams  E. E. 《Biotechnology letters》1985,7(4):253-254
Summary Grape pomace was used as substrate for microbial production of citric acid. Of the five cultures examined,Aspergillus niger NRRL 567 was found to produce the greatest amount of citric acid from grape pomace in the presence of methanol at a concentration of 3% (vol/wt). The yield was 60% based on the amount of fermentable sugar consumed.  相似文献   

14.
Extraction of Zinc from Industrial Waste by a Penicillium sp   总被引:2,自引:1,他引:1       下载免费PDF全文
Zinc was extracted from a filter residue of a copper works (58.6% zinc) by a Penicillium sp. isolated from a metal-containing location. By isotachophoresis citric acid was identified as the leaching agent. Citrate was only formed when the leaching substrate was present. This production of citrate was different in several ways from that achieved by Aspergillus niger: glucose was utilized before fructose; the initial concentration of zinc was 50 to 500 times higher than usual in citrate fermentations with A. niger; citrate production stopped when 80 to 90% of the zinc was leached, although sufficient sugar for further synthesis was still present; and in synthetic media citrate production by A. niger needs an acidic environment (pH 2), while the formation of citric acid by Penicillium sp. occurred in a pH range of 7 to 4. Tests with different concentrations of waste material (0.5, 2.5, and 5%) showed that the highest yield of solubilized zinc occurred with a 2.5% substrate (93% zinc extracted after 13 days).  相似文献   

15.
The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30°C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35°C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 298–304. Received 15 April 2000/ Accepted in revised form 11 August 2000  相似文献   

16.
A method is introduced which makes a continuous oxidation of glucose to glucose acid possible. This method is based on the auxiliary-substrate concept and co-metabolism, respectively. Micro-organisms (e.g. Acinetobacter calcoaceticus), which cannot assimilate glucose, but merely oxidize it, are grown continuously on a heterotrophic substrate (e.g. acetate). While growing they simultaneously synthesize gluconic acid. The productivity of the gluconic acid synthesis with a given strain depends on the dilution rate and the mixing proportion. Since growth and product synthesis are closely connected and growth yield is very much higher due to an auxiliary substrate effect in the presence of glucose than on the heterotrophic substrate alone, this method is suitable for SCP production as well. The productivity of gluconic acid production is controlled at a certain dilution rate by the mixing proportion of the growth substrate and glucose.  相似文献   

17.
Gluconic acid was produced in repeated batch processes with Aspergillus niger AM-11, immobilized in pumice stone particles using an unconventional oxygenation of culture media based on the addition of H2O2, decomposed by catalase to O2 and water. The highest gluconic acid productivity of 8.2 g l–1 h–1 was reached with 30 g immobilized mycelium per 150 ml, 10% (w/v) glucose, at 24 °C and pH 6.5, with O2 at 100% saturation. The immobilized mycelium was successfully reused up to 8 times in 1-h batches with only a slight loss (11%) of gluconic acid productivity.  相似文献   

18.
Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.  相似文献   

19.
A mixed enzyme system, with -fructofuranosidase (obtained from Aspergillus japonicus) and commercial glucose oxidase (Gluzyme, Novo Nordisk), produced fructooligosaccharides (FOS) in high yield from sucrose. The reaction was performed in an aerated stirred tank reactor controlled at pH 5.5 by a slurry of CaCO3. Glucose, an inhibitor of -fructofuranosidase, produced in the reaction was converted by glucose oxidase to gluconic acid, which was then precipitated to calcium gluconate in solution. The system produced more than 90% (w/w) FOS on a dry weight basis, the remainder was glucose, sucrose and a small amount of calcium gluconate. Most of the FOS and sucrose was hydrolyzed to fructose in the mixed enzyme system with glucose oxidase and -fructofuranosidase from Asp. niger.  相似文献   

20.
The excretion, cellular distribution and pH profiles of invertase in Aspergillus niger CCM 8004 were characterized. An optimized pH control was proposed for conversion of sucrose to gluconic acid and fructose: pH was maintained at 4.5 until the 12th hour and at 5.5 from the 12th hour of fermentation. 300 g · dm3 of sucrose was converted within 31 hours by this procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号