首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Isoelectric focusing was used to investigate the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase, beta-galactosidase and beta-N-acetylhexosaminidase in the following, previously characterized subcellular fractions from rat kidney: a special rough microsomal fraction, enriched up to 9-fold over the homogenate in acid hydrolases; a smooth microsomal fraction; a Golgi membrane fraction enriched about 2.5-fold in acid hydrolases and 10- to 20-fold in several glycosyl transferases; and a lysosomal fraction enriched up to 25-fold in acid hydrolases. The electro-focusing behavior of the hydrolases in these fractions was markedly sensitive to the autolytic changes that occur under acidic conditions, even at 4 degrees C. Autolysis was minimized by extracting fractions in an alkaline medium (0.2% Triton X-100, 0.1 M sodium glycinate buffer, pH 10, 0.1 % p-nitrophenyloxamic acid) and adding p-nitrophenyloxamic acid (0.1 %), AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND cathepsin D, to the pH gradient. The enzymes in the lysosomal fraction displayed a characteristic bimodal or trimodal distribution. Arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in an acidic form with an isoelectric point of 4.4, and a basic form with an isoelectric point of 6.2, 6.7 and 8.0, respectively. Acid phosphatase and beta-galactosidase occurred in an acidic, intermediate and basic form with isoelectric points of about 4. 1, 5.6 and 7.4, respectively. In the special rough microsomal fraction these enzymes were mostly in a basic form with isoelectric points between 7.5 and 9; these were 1-2 units higher than the corresponding basic forms in the lysosomal fraction. Treatment of extracts of the rough microsomal fraction with bacterial neuraminidase raised the isoelectric points of all five hydrolases by 1-2.5 units, indicating the presence of some N-acetylneuraminic acid residues in these basic glycoenzymes. The hydrolases in the Golgi fraction were largely in an acidic form with isoelectric points similar to or lower than those of the corresponding acidic components in the lysosomal fraction. The hydrolases in the smooth microsomal fraction showed isoelectric-focusing patterns intermediate between those in the rough microsomal and the Golgi fractions. These findings support the following scheme for the synthesis, transport and packaging of the lysosomal enzymes. Each hydrolase is synthesized in a restricted portion of the r  相似文献   

2.
The latency of the alpha-glucosidase activity of intact rat liver lysosomes was studied by using four substrates (glycogen, maltose, p-nitrophenyl, alpha-glucoside, alpha-fluoroglucoside) at a range of substrate concentrations. The results indicate that the entire lysosome population is impermeable to glycogen and maltose, but a proportion of lysosomes are permeable to alpha-fluoroglucoside and a still higher proportion permeable to p-nitrophenyl alpha-glucoside. Incubation at 37 degrees C in an osmotically protected buffer of of pH 5.0 caused lysosomes to become permeable to previously impermeant substrates and ultimately to release their alpha-glucosidase into the medium. The latencies of lysosomal beta-glucosidase and beta-galactosidase were examined by using p-nitrophenyl beta-glucoside and beta-galactoside as substrates. The results indicate permeability properties to these substrates similar to that to p-nitrophenyl alpha-glucoside. On incubation in an osmotically protected buffer of pH 5, lysosomes progressively released their beta-galactosidase in soluble form, but beta-glucosidase remained attached to sedimentable material. Lysosomal beta-glucosidase was inhibited by 0.1% Triton X-100; alpha-glucosidase and beta-galactosidase were not inhibited.  相似文献   

3.
Non-latent (free) activities of two lysosomal enzymes (acid phosphatase and beta-glucuronidase) and urea production were measured in purified rat liver parenchymal cells incubated in the presence and absence of insulin. Non-latent enzyme activity was measured by including 0.25M sucrose in the assay mixtures to provide osmotic protection to the lysosomes. Total enzyme activity was estimated with Triton X-100 in the homogenates. Insulin was found to inhibit ureogenesis and to reduce non-latent lysosomal enzyme activity in the hepatocytes in vitro. Our data support the idea that insulin inhibits autophagy in rat liver parenchymal cells. Such an effect of insulin may also explain the inhibitory action of insulin on urea production in the rat liver.  相似文献   

4.
Partial purification and properties of acid sphingomyelinase from rat liver   总被引:2,自引:0,他引:2  
Acid sphingomyelinase was purified approximately 5,200-fold from the mitochondria-lysosome-enriched particles of rat liver by sequential chromatography on DEAE-cellulose, octyl-Sepharose, Sephacryl S-300, Concanavalin A-Sepharose, and CM-cellulose. The specific activity of this highly purified enzyme was 3.2 mmol per hr per mg protein. The enzyme was active against 2-hexadecanoylamino-4-nitrophenylphosphorylcholine, but bis-4-methylumbelliferyl-phosphate and bis-p-nitrophenyl-phosphate were poor substrates. The preparation was free of Mg2+-dependent neutral sphingomyelinase and eight lysosomal enzymes except for the trace amount of acid phosphatase and beta-galactosidase. Apparent molecular weight of the enzyme was 200,000, estimated by Sephadex G-200 filtration in 0.1% Triton X-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed three major bands corresponding to molecular weights of 45,600, 44,500, and 40,000 with several minor bands. Characterization of the enzyme revealed almost the same properties as those of human tissues reported by other investigators, including pH optimum, requirement of Triton X-100, effects of metal divalent cations, phosphate ion, EDTA, some thiol blocking reagents, and amphophilic drugs.  相似文献   

5.
The activities of acetylcholinesterase and Ca2+ + Mg2+ ATPase were measured following treatment of human erythrocyte membranes with nonsolubilizing and solubilizing concentrations of Triton X-100. A concentration of 0.1% (v/v) Triton X-100 caused a significant inhibition of both enzymes. The inhibition appears to be caused by perturbations in the membrane induced by Triton X-100 incorporation. No acetylcholinesterase activity and little Ca2+ + Mg2+ ATPase activity were detected in the supernatant at 0.05% Triton X-100 although this same detergent concentration induced changes in the turbidity of the membrane suspension. Also, no inhibition of soluble acetylcholinesterase was observed over the entire detergent concentration range. The inhibition of these enzymes at 0.1% Triton X-100 was present over an eightfold range of membrane protein in the assay indicating an independence of the protein/detergent ratio. The losses in activities of these two enzymes could be prevented by either including phosphatidylserine in the Triton X-100 suspension or using Brij 96 which has the same polyoxyethylene polar head group but an oleyl hydrophobic tail instead of the p-tert-octylphenol group of Triton X-100. The results are discussed in regard to the differential recovery of enzyme activities over the entire detergent concentration range.  相似文献   

6.
Abstract

The effect of various detergents treatment on the specific binding of [3H]PK 11195 (2nM) to peripheral-type benzodiazepine binding sites (PBS) in calf and rat kidney, adrenal gland, and cerebral cortex membranes was studied. At a concentration of 0.025%, Triton X-100 increased [3H]PK 11195 specific binding to calf kidney, adrenal gland, and cerebral cortex membranes by 20–40%. At the same concentration, Triton X-100 scarcely affected specific binding of [3H]PK 11195 to rat cerebral cortex but decreased binding to rat kidney and adranal gland membranes by 20–30%. At a concentration of 0.05% of Triton X-100, [3H]PK 11195 specific binding to calf kidney, adrenal gland, and cerebral cortex membranes was increased by 10–20%; whereas [3H]PK 11195 specific binding to rat kidney, adrenal gland, and cerebral cortex membranes was decreased by more than 40%. The increase in [3H]PK 11195 specific binding to calf kidney membranes following Triton X-100 (0.05%) treatment was apparently due to an increase in the binding affinity of PBS, since the density remained unaltered; whereas, the decrease in [3H]PK 11195 specific binding to rat kidney membranes was due to a decrease in both binding affinity and density of PBS. On the other hand, the detergents 3- [(3- cholamidopropyl)- dimethylammonio] - 1 - propane sulfonate (CHAPS), Tween 20, deoxycholic acid, and digitonin have a similar effect on [3H]PK 11195 specific binding to PBS in both calf and rat kidney membranes.  相似文献   

7.
Palmitic acid solubilized with Triton WR-1339 was converted to palmitoyl-CoA by microsomal membranes but lignoceric acid solubilized with Triton WR-1339 was not an effective substrate even though the detergent dispersed the same amount of these fatty acids and was also not inhibitory to the enzyme [I. Singh, R. P. Singh, A. Bhushan, and A. K. Singh (1985) Arch. Biochem. Biophys. 236, 418-426]. This observation suggested that palmitoyl-CoA and lignoceroyl-CoA may be synthesized by two different enzymes. We have solubilized the acyl-CoA ligase activities for palmitic and lignoceric acid of rat brain microsomal membranes with Triton X-100 and resolved them into three separate peaks (fractions) by hydroxylapatite chromatography. Fraction A (palmitoyl-CoA ligase) had high specific activity for palmitic acid and Fraction C (lignoceroyl-CoA ligase) for lignoceric acid. Specific activity of palmitoyl-CoA ligase for palmitic acid was six times higher than in Fraction C and specific activity of lignoceroyl-CoA ligase for lignoceric acid was four times higher than in Fraction A. At higher concentrations of Triton X-100 (0.5%), lignoceroyl-CoA ligase loses activity whereas palmitoyl-CoA ligase does not. Lignoceroyl-CoA ligase lost 60% of activity at 0.6% Triton X-100. Palmitoyl-CoA ligase (T1/2 of 4.5 min) is more stable at 40 degrees C than lignoceroyl-CoA ligase (T1/2 of 1.5 min). The pH optimum of palmitoyl-CoA ligase was 7.7 and that of lignoceroyl-CoA ligase was 8.4. Similar to our results with intact membranes, palmitic acid solubilized with Triton WR-1339 was converted to palmitoyl-CoA by palmitoyl-CoA ligase whereas lignoceric acid when solubilized with Triton WR-1339 was not able to act as substrate for lignoceroyl-CoA ligase. Since solubilized enzyme activities for synthesis of palmitoyl-CoA and lignoceroyl-CoA from microsomal membranes can be resolved into different fractions by column chromatography and demonstrate different properties, we suggest that in microsomal membranes palmitoyl-CoA and lignoceroyl-CoA are synthesized by two different enzymes.  相似文献   

8.
Isoelectric focusing was used to study the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase in lysosomes isolated from rat kidney. The isoelectric points of the main protein and hydrolase peaks were 1-1.5 units lower when electrofocusing was done in a pH 3-10 gradient than in a pH 10-3 gradient, apparently because the lysosomal constituents aggregated strongly at their isoelectric points and tended to settle somewhat in the gradient due to gravity. In the extended pH gradient the acidic form of each hydrolase occurred as asingle, relatively discrete peak. However, when pooled acidic fractions were refocused in a restricted pH gradient (pH 6-3 or 3-5) multiple acidic enzyme and protein components were resolved with isoelectric points between 2.7 and 5.1. When autolysis was minimized by extracting lysosomal fractions at alkaline pH (0.2% Triton X-100, 0.1%p-nitrophenyloxamic acid, 0.1 M glycine buffer, pH9) and including 0.1%p-NITROPHENYLOXAMIC ACID, AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND CATHEPSIN D, in the pH gradient, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in two forms, an acidic form with an isoelectric point of about 4.4, and a basic form with an isoelectric point close to 6.2, 6.7 and 8.0, respectively. Acid phosphatase occurred in three forms with isoelectric points of 4.1, 5.6 and 7.4. When some autolytic digestion was permitted by extracting lysosomal fractions in an acidic medium (0.2% Triton X-100, 0.1 M sodium acetate buffer, pH 5.2) AT 0-4DEGREES C and omitting p-nitrophenyloxamic acid from the gradient, the acidic form of beta-glucuronidase and the intermediate form of acid phosphatase were lost, the isoelectric points of the acidic forms of acid phosphatase, arylsulfatase and beta-N-acetylhexosaminidase were increased 0.6-1.2 units, and the isoelectric point of the basic forms of acid phosphatase, arylsulfatase and beta-glucuronidase was increased 0.5 unit. When lysosomal extracts were incubated with bacterial neuraminidase before electrofocusing, the acidic forms of acid phosphatase, arylsulfatase and beta-glucuronidase were largely lost, the isoelectric point of the acidic form of beta-N-acetylhexosaminidase was increased from 4.5 to 6.4, and the isoelectric points of the basic forms of all four hydrolases were increased 0.5-1.5 units. Autoincubation of lysosomal extracts in vitro at pH 5.2 PRODUCED SIMILAR, THOUGH LESS MARKED, effects. cont'd  相似文献   

9.
The differentiation of rat liver lysosomal acid phosphatase, acid ATPase, acid phosphodiesterase, acid ribonuclease, and acid deoxyribonuclease was studied by isoelectric focusing. To prevent autolytic digestion, inhibitors of cathepsins and neuraminidase were used. The proportion of acidic forms of acid phosphatase, acid ATPase and acid phosphodiesterase was increased by the use of extraction medium containing 0.05% Triton X-100. To investigate the identity of acid ATPase and acid phosphodiesterase, the relative activities among the multiple forms of these enzymes, the acid phosphodiesterase/acid ATPase ratio at each activity peak, and the degree of enzyme inhibition by p-chloromercuriphenyl sulfonic acid were estimated. The results suggest that acid ATPase is not identical with acid phosphodiesterase. With extraction medium free of Triton X-100, acid ribonuclease appeared in two forms. However, in addition to these forms, a new form of this enzyme with a more acidic pI (4.22) emerged when extraction medium containing 0.05% Triton X-100 was used. The major peak of acid deoxyribonuclease with pI=8.40-9.39 was obtained regardless of the extracting method.  相似文献   

10.
Ornithine aminotransferase was purified from human liver, rat liver and rat kidney. Sodium dodecyl sulphate polyacrylamide gel electrophoresis indicated a subunit molecular weight of 45,000 in all three cases. Estimations of the native molecular weights of ornithine aminotransferase were determined by Sephadex G-200 chromatography in the presence and absence of 0.1% (w/v) Triton X-100. Human and rat enzymes were tetrameric in the presence of detergent but the rat subunits aggregated further in its absence. Characterisation of ornithine aminotransferase from the two rat sources indicated that they were the same protein. The human and rat enzymes were similar but not identical.  相似文献   

11.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

12.
Y Nishiyama  H Hayashi  T Watanabe    N Murata 《Plant physiology》1994,105(4):1313-1319
We investigated the factors responsible for the heat stability of photosynthetic oxygen evolution by examining thylakoid membranes from the cyanobacterium Synechococcus sp. PCC 7002. We found that treatment of the thylakoid membranes with 0.1% Triton X-100 resulted in a remarkable decrease in the heat stability of oxygen evolution, and that the heat stability could be restored by reconstituting the membranes with the components that had been extracted by Triton X-100. The protein responsible for the restoration of heat stability was purified from the Triton X-100 extract by two successive steps of chromatography. The purified protein had a molecular mass of 16 kD and exhibited the spectrophotometric properties of a c-type Cyt with a low redox potential. The dithionite-minus-ascorbate difference spectrum revealed an alpha band maximum at 551 nm. We were able to clone and sequence the gene encoding this Cyt from Synechococcus sp. PCC 7002, based on the partial amino-terminal amino acid sequence. The deduced amino acid sequence revealed a gene product consisting of a 34-residue transit peptide and a mature protein of 136 residues. The mature protein is homologous to Cyt c550, a Cyt with a low redox potential. Thus, our results indicate that Cyt c550 greatly affects the heat stability of oxygen evolution.  相似文献   

13.
M Awad  M Gavish 《Life sciences》1988,43(2):167-175
The present study demonstrates a differential effect of various detergent treatments on [3H]Ro 5-4864 and [3H]PK 11195 binding to peripheral benzodiazepine binding sites (PBS). Triton X-100 (0.0125%) caused a decrease of about 70% in [3H]Ro 5-4864 binding to membranes from various peripheral tissues of rat, but had only a negligible effect on [3H]PK 11195 binding. A similar effect of Triton X-100 was observed on guinea pig and rabbit kidney membranes. The decrease in [3H]Ro 5-4864 binding after treatment with Triton X-100 was apparently due to a decrease in the density of PBS, since the affinity remained unaltered. The detergents 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholic acid, or digitonin (0.0125%) caused only a minor change in [3H]Ro 5-4864 and [3H]PK 11195 binding to rat kidney membranes; but when concentrations were substantially increased (0.1%), all detergents caused a decrease of at least 50% in [3H]Ro 5-4864 binding, while [3H]PK 11195 binding to rat kidney membranes remained unaffected by the first three detergents, with only a minor decrease (15%) after treatment with digitonin. These results may further support the assumption that Ro 5-4864 and PK 11195 are agonist and antagonist, respectively, of PBS and interact with two different conformations or domains in the peripheral-type benzodiazepine binding site molecule.  相似文献   

14.
Structural equivalents of latency for lysosome hydrolases.   总被引:8,自引:5,他引:3       下载免费PDF全文
1. Structure-linked latency, a trait for most lysosome hydrolase activities, is customarily ascribed to the permeability-barrier function performed by the particle-limiting membrane, which shields enzyme sites from externally added substrates. 2. The influence of various substrate concentrations on the reaction rate has been measured for both free (non-latent) and total (completely unmasked by Triton X-100) hydrolase activities in rat liver cell-free preparations. The substrates were: beta-glycerophosphate, phenolphthalein mono-beta-glucuronide. p-nitrophenyl N-acetyl-beta-D-glucosaminide and p-nitrophenyl beta-D-galactopyranoside. The ratio (free activity/total activity) X 100 is called fractional free activity at any given substrate concentration. 3. The fractional free activity of beta-glucuronidase and beta-N-acetylglucosaminidase were clearly independent of substrate concentration, over the range examined, in both homogenates and lysosome-rich fractions. The fractional free activity of acid phosphatase appeared to be either unaffected (homogenate) or even depressed (lysosome-rich fraction) by increasing the beta-glycerophosphate concentration. The fractional free activity of beta-galactosidase consistently showed a non-linear increase with increasing substrate concentration in both homogenates and lysosome-rich fractions. 4. Procedures such as treatment with digitonin, hypo-osmotic shock and acid autolysis, although effective in causing varying degrees of resolution of the latency of lysosome hydrolase activities, were unable to modify appreciably the pattern of dependence or independence of their fractional free activities on substrate concentration, as compared with that exhibited by control preparations. Ouabain did not affect the free beta-N-acetylglucosaminidase activity of liver homogenates at all. 5. Preincubation of control preparations with beta-glycerophosphate or p-nitrophenyl beta-galactoside did not result in any significant stimulation of the free hydrolytic activity toward these substrates. 6. The results consistently support the view that the membrane of "intact" lysosomes is virtually impermeable to all the substrates tested, except for p-nitrophenyl beta-galactoside, for which the evidence is contradictory. Moreover the progressive unmasking of the hydrolase activities produced by these procedures in vitro reflects the increasing proportion of enzyme sites that are fully accessible to their substrates rather than a graded increase in the permeability of the lysosomal membrane.  相似文献   

15.
In order to know if the beta-galactosidase of the rat epididymal fluid, as other secreted acid hydrolases, carries a marker in its molecule, we studied the binding of this enzyme to cellular membranes of the epididymal tissue. The binding, like that mediated by the phosphomannosyl receptor, was saturable, did not require calcium, had a Kd in the nM range and was inhibited by phosphatase or metaperiodate treatment of the enzyme. However fructose 6-phosphate derivates were more effective competitive inhibitors than mannose 6-phosphate. The binding capacity of the membranes were extractable with Triton X-100 and incorporable into liposomes. Trypsin inhibited the binding capacity of Triton extracts but it did not affect the affinity of intact cellular membranes for beta-galactosidase. The results suggest that a phosphorylated carbohydrate of the enzyme is bound by a recognizing site of the cellular membranes different from the phosphomannosyl receptor.  相似文献   

16.
Physical and chemical properties of the rat liver lysosomes with single Triton WR 1339 overloading were studied during the administration of a detergent to intact rats and those with acute toxic hepatitis. Administration of the latter to intact animals was accompanied by a reduction of the floating density of the particles, solubilization of the lysosome enzymes and by increased fragility of the particles in the hypotonic medium. Lysosomes of the hepatocytes in rats with toxic hepatitis also displayed signs of overloading of the vacuolar apparatus with the preparation administered. The most pronounced solubilization of the lysosomal enzymes beta-galactosidase, acid RNA-ase, cathepsin D--was noted in case of combined action of CCl4 and Triton WR 1339 24, 48, 72 hours and 7 days after the CCl4 poisoning. Possible consequences of overloading of the vacuolar apparatus of the rat hepatocytes are discussed.  相似文献   

17.
Rat and human steroid sulfatases were purified from liver and placenta, respectively, by the same procedure. The rat and human enzymes were solubilized with Triton X-100, and purified by immunoaffinity chromatography with a monoclonal antibody showing high binding activities to both the enzymes. They were further purified by high-pressure anion-exchange chromatography to compare their structural and catalytic properties. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that both enzymes had a molecular weight of 62,000. The enzymes had similar amino acid compositions and amino-terminal amino acid sequences. Significant differences of the optimum pH, Michaelis constant and maximum velocity were observed between these enzymes. The optimum pH of each enzyme varied from 6.0 to 8.0, depending on substrates and with or without Triton X-100. In detergent-free media, steroid sulfates competitively inhibited the ability of these enzymes to hydrolyze 4-nitrophenyl sulfate. In media containing Triton X-100, on the other hand, the inhibition types of the steroid sulfates on the hydrolyzing activities of the rat and human enzymes were noncompetitive- and mixed-types, respectively.  相似文献   

18.
In the absence of detergent, specific binding of [3H]GR65630, a 5-hydroxytryptamine3 (5-HT3) antagonist, determined in the presence of 5-HT3 receptor antagonist ICS205-930, was at most 30% of the total binding. To decrease the level of nonspecific binding, the effects of detergents on [3H]GR65630 binding to rat cortical membranes were investigated. The use of a detergent (0.1% Lubrol PX or Triton X-100) decreased nonspecific binding, increasing the proportion of specific binding to 70% of total binding. In the presence of 0.1% Triton X-100, binding of [3H]GR65630 was rapid, reversible and saturable at 25°C. The rank order of 5-HT3 receptor active drugs in inhibiting [3H]GR65630 binding was quipazine > ICS205-930 > 2-methyl-5-HT = 5-HT > metoclopramide, which confirmed that [3H]GR65630 efficiently labeled 5-HT3 receptors in the presence of Triton X-100. Triton X-100 improved 5-HT3 receptor binding with rat brain membranes.  相似文献   

19.
Plasma membranes were isolated from rat liver homogenates either by differential centrifugation or by fractionation in discontinuous sucrose density gradients. Both membrane preparations contained about 17% of the total uridine phosphorylase (EC 2.4.2.3) activity and 44% of the total 5'-nucleotidase (EC 3.1.3.5). The enrichment factor for uridine phosphorylase in the fractions prepared by differential centrifugation was about 2.8 and by the gradient method, as much as 11.0; the respective enrichment factors for 5'-nucleotidase were 1.8 and 9.5. Uridine phosphorylase activity of isolated plasma membrane fractions was stimulated 2.5-fold by 0.1% Triton X-100. Unlike the cytosol enzyme, uridine phosphorylase of plasma membranes showed little or no deoxyuridine-cleaving activity. Contamination of the membrane fractions by thymidine phosphorylase (EC 2.4.2.4) of the cytosol was negligible. The other subcellular organelles obtained by either procedure and characterized by marker enzyme activities were found not to contain significant uridine phosphorylase activity; the cytosol fractions contained just over 70% of the total uridine phosphorylase activity with an enrichment of only about 2.8-fold. The activity of the cytosol enzyme was not stimulated by Triton X-100.  相似文献   

20.
We have shown previously that the phospholipase A (PLA) activity specific for phosphatidic acid (PA) in porcine platelet membranes is of the A(1) type (PA-PLA(1)) [J. Biol. Chem. 259 (1984) 5083]. In the present study, the PA-PLA(1) was solubilized in Triton X-100 from membranes pre-treated with 1 M NaCl, and purified 280-fold from platelet homogenates by sequential chromatography on blue-Toyopearl, red-Toyopearl, DEAE-Toyopearl, green-agarose, brown-agarose, polylysine-agarose, palmitoyl-CoA-agarose and blue-5PW columns. In the presence of 0.1% Triton X-100 in the assay mixture, the partially purified enzyme hydrolyzed the acyl group from the sn-1 position of PA independently of Ca(2+) and was highly specific for PA; phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were poor substrates. The enzyme exhibited lysophospholipase activity for l-acyl-lysoPA at 7% of the activity for PA hydrolysis but no lipase activity was observed for triacylglycerol (TG) and diacylglycerol (DG). At 0.025% Triton X-100, the enzyme exhibited the highest activity, and PA was the best substrate, but PE was also hydrolyzed substantially. The partially purified PA-PLA(1) in porcine platelet membranes was shown to be different from previously purified and cloned phospholipases and lipases by comparing the sensitivities to a reducing agent, a serine-esterase inhibitor, a PLA(2) inhibitor, a Ca(2+)-independent phospholipase A(2) inhibitor, and a DG lipase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号