首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Yamada  R Kuroki  M Hirata  T Imoto 《Biochemistry》1983,22(19):4551-4556
The salt bridge between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme was converted to an amide bond by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) reaction in the presence of imidazole (0.3-1 M) at pH 5 and room temperature, followed by dialysis at pH 10. Absence of imidazole under a similar condition did not give this intramolecularly cross-linked lysozyme derivative (CL-lysozyme) but resulted in the formation of intermolecularly cross-linked lysozyme oligomers. From the mechanistic studies on the formation of CL-lysozyme, imidazole was suggested to play the following three roles. (1) Some carboxyl groups activated by EDC in lysozyme were converted to acylimidazole groups which protected them from the reaction with amino groups in other lysozyme molecules at pH 5. These could be hydrolyzed at pH 10 to regenerate free carboxyls. (2) High concentrations of imidazole (pH 5) increased the ionic strength of the solution which weakened the salt bridge in lysozyme and facilitated the activation of the alpha-carboxyl group by EDC. (3) The alpha-carboxyl group activated by EDC was converted to an acylimidazole group which could react with the epsilon-amino group of Lys-13 in the same molecule to form an amide bond. The last step may involve some conformational change of the backbone of lysozyme and be slower than the hydrolysis reaction of the alpha-carboxyl group activated by EDC itself. However, acylimidazole groups are stable against hydrolysis at pH 5. This may afford enough time to allow the epsilon-amino group of Lys-13 to attack the acylimidazole group of Leu-129.  相似文献   

2.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

3.
分子伴侣Hsp40是一种以二聚体的形式调控非天然多肽折叠的热激蛋白。本文通过拉伸分子动力学研究了酵母Hsp40家族成员Ydj1p二聚体中β14-β15与domain-Ⅲ的分离过程,深入探讨了影响Ydj1p二聚体稳定性的重要残基和相互作用力。研究表明,残基Thr366、Asp368、Cys370、Leu372和Phe375在Ydj1P二聚体的形成过程中发挥着重要的作用。其中,β14-β15中的残基Thr366和Asp368分别通过与domain-Ⅲ内的残基Asp291、Trp292和Trp292、Lys294之间形成的氢键,Asp368通过与domain-Ⅲ内的残基Lys314形成盐桥,Cys370、Leu372和Phe375则是通过与domain-Ⅲ形成疏水作用力来稳定Ydj1p二聚体结构。  相似文献   

4.
The crystal structure of BeF(3)(-)-activated CheY, with manganese in the magnesium binding site, was determined at 2.4-A resolution. BeF(3)(-) bonds to Asp(57), the normal site of phosphorylation, forming a hydrogen bond and salt bridge with Thr(87) and Lys(109), respectively. The six coordination sites for manganese are satisfied by a fluorine of BeF(3)(-), the side chain oxygens of Asp(13) and Asp(57), the carbonyl oxygen of Asn(59), and two water molecules. All of the active site interactions seen for BeF(3)(-)-CheY are also observed in P-Spo0A(r). Thus, BeF(3)(-) activates CheY as well as other receiver domains by mimicking both the tetrahedral geometry and electrostatic potential of a phosphoryl group. The aromatic ring of Tyr(106) is found buried within a hydrophobic pocket formed by beta-strand beta4 and helix H4. The tyrosine side chain is stabilized in this conformation by a hydrogen bond between the hydroxyl group and the backbone carbonyl oxygen of Glu(89). This hydrogen bond appears to stabilize the active conformation of the beta4/H4 loop. Comparison of the backbone coordinates for the active and inactive states of CheY reveals that only modest changes occur upon activation, except in the loops, with the largest changes occurring in the beta4/H4 loop. This region is known to be conformationally flexible in inactive CheY and is part of the surface used by activated CheY for binding its target, FliM. The pattern of activation-induced backbone coordinate changes is similar to that seen in FixJ(r). A common feature in the active sites of BeF(3)(-)-CheY, P-Spo0A(r), P-FixJ(r), and phosphono-CheY is a salt bridge between Lys(109) Nzeta and the phosphate or its equivalent, beryllofluoride. This suggests that, in addition to the concerted movements of Thr(87) and Tyr(106) (Thr-Tyr coupling), formation of the Lys(109)-PO(3)(-) salt bridge is directly involved in the activation of receiver domains generally.  相似文献   

5.
The complete amino acid sequence of the 121 amino acid residues of piratoxin II, a phospholipase A(2) like myotoxin from Bothrops pirajai venom, is reported. PrTX-II is a basic protein with a molecular mass of 13740 Da, a calculated pI of 9.03, but an experimental pI of 8.4 +/- 0.2, showing sequence similarity with other bothropic (90-99%) or non-bothropic ( approximately 80%) Lys49 PLA(2)-like myotoxins. This similarity falls to approximately 70% when this sequence is aligned with that of Asp49 PLA(2). Due to the substitution of Asp49 by Lys49 and alterations in the calcium binding loop structure, as the replacement of Gly32 by Leu32, piratoxin-II shows no PLA(2) activity when assayed on egg yolk. Piratoxin-II showed the same primary structure as piratoxin-I, except that it has Lys116 for Leu116. Despite this slightly higher basicity at the C-terminal region, piratoxin-II was shown to be less myotoxic than piratoxin-I. The change Leu --> Lys induced an alteration of the molecule surface shape and probably of the environment charge high enough to slightly decrease the myotoxic activity. When aligned with B. jararacussu bothropstoxin-I and with B. asper Basp-II, piratoxin-II revealed a single (position 132) and a quintuple (positions 17, 90, 111, 120 and 132) amino acid substitution, respectively, suggesting a common evolutionary origin for these three myotoxins.  相似文献   

6.
Grove A 《Biochemistry》2003,42(29):8739-8747
The histone-like protein HU is involved in compaction of the bacterial genome. Up to 37 bp of DNA may be wrapped about some HU homologues in a process that has been proposed to depend on a linked disruption of surface salt bridges that liberates cationic side chains for interaction with the DNA. Despite significant sequence conservation between HU homologues, binding sites from 9 to 37 bp have been reported. TF1, an HU homologue that is encoded by Bacillus subtilis bacteriophage SPO1, has nM affinity for 37 bp preferred sites in DNA with 5-hydroxymethyluracil (hmU) in place of thymine. On the basis of electrophoretic mobility shift assays, we show that TF1-DNA complex formation is associated with a net release of only approximately 0.5 cations. The structure of TF1 suggests that Asp13 can form a dehydrated surface salt bridge with Lys23; substitution of Asp13 with Ala increases the net release of cations to approximately 1. These data are consistent with complex formation linked to disruption of surface salt bridges. Substitution of Glu90 with Ala, which would expose Lys87 predicted to contact DNA immediately distal to a proline-mediated DNA kink, causes an increase in affinity and an abrogation of the preference for hmU-containing DNA. We propose that hmU preference is due to finely tuned interactions at the sites of kinking that expose a differential flexibility of hmU- and T-containing DNA. Our data further suggest that the difference in binding site size for HU homologues is based on a differential ability to stabilize the DNA kinks.  相似文献   

7.
To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML) in the production of human milk fat substitute (HMFS), we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease) and tripalmitin (7.55 KJ/mol decrease) were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type). The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.  相似文献   

8.
Zhang N  Chen X  Li M  Cao C  Wang Y  Wu G  Hu G  Wu H 《Biochemistry》2004,43(39):12469-12476
BmKK4 is a 30 amino acid peptide purified from the venom of the Chinese scorpion Buthus martensi Karsch. It has been classified as the first member of scorpion toxin subfamily alpha-KTx 17. The 3D structure of BmKK4 in solution has been determined by 2D NMR spectroscopy. This toxin adopts a common alpha/beta-motif, but shows a distinctive local conformation. The most novel feature is that the regular arrangements of the side chains of the residues involved in the beta-sheet of BmKK4 are distorted by a classic beta-bulge structure, which involves two residues (Asp18 and Arg19) in the first strand opposite a single residue (Tyr26) in the second strand. The bulge produces two main changes in the structure of the antiparallel beta-sheet: (1) It disrupts the normal alteration of the side chain direction; the side chain of Asp18 turns over to form a salt bridge with that of Arg19. (2) It accentuates the twist of the sheet, and alters the direction of the antiparallel beta-sheet. The unusual structural feature of the toxin is attributed to the shorter peptide segment (Leu15-Arg19) between the third and fourth Cys residues and two unique residues (Asp18 and Arg19) at the position preceding the fourth Cys. In addition, the lower affinity of the peptide for the Kv channel is correlated to the structural features: residue Arg19 instead of a Lys residue at the critical position for binding and the salt bridge formed between residues Arg19 and Asp18.  相似文献   

9.
Sodium–proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium–proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium–proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium–proton antiport in NhaA.  相似文献   

10.
Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and ∼10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S1 pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.  相似文献   

11.
Mevalonate kinase catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate, a key intermediate in the pathways of isoprenoids and sterols. Deficiency in mevalonate kinase activity has been linked to mevalonic aciduria and hyperimmunoglobulinemia D/periodic fever syndrome (HIDS). The crystal structure of rat mevalonate kinase in complex with MgATP has been determined at 2.4-A resolution. Each monomer of this dimeric protein is composed of two domains with its active site located at the domain interface. The enzyme-bound ATP adopts an anti conformation, in contrast to the syn conformation reported for Methanococcus jannaschii homoserine kinase. The Mg(2+) ion is coordinated to both beta- and gamma-phosphates of ATP and side chains of Glu(193) and Ser(146). Asp(204) is making a salt bridge with Lys(13), which in turn interacts with the gamma-phosphate. A model of mevalonic acid can be placed near the gamma-phosphoryl group of ATP; thus, the C5 hydroxyl is located within 4 A from Asp(204), Lys(13), and the gamma-phosphoryl of ATP. This arrangement of residues strongly suggests: 1) Asp(204) abstracts the proton from C5 hydroxyl of mevalonate; 2) the penta-coordinated gamma-phosphoryl group may be stabilized by Mg(2+), Lys(13), and Glu(193); and 3) Lys(13) is likely to influence the pK(a) of the C5 hydroxyl of the substrate. V377I and I268T are the most common mutations found in patients with HIDS. Val(377) is located over 18 A away from the active site and a conservative replacement with Ile is unlikely to yield an inactive or unstable protein. Ile-268 is located at the dimer interface, and its Thr substitution may disrupt dimer formation.  相似文献   

12.
Ribonuclease (RNase) T1 is a guanyloribonuclease, having two isozymes in nature, Gln25- and Lys25-RNase T1. Between these two isozymes, there is no difference in catalytic activity and three-dimensional structure; however, Lys25-RNase T1 is slightly more stable than Gln25-RNase T1. Recently, it has been suggested that the existence of a salt bridge between Lys25 and Asp29/Glu31 in Lys25-RNase T1 contributes to the stability. To elucidate the effects of the replacement of Lys25 with a Gln on the conformation and microenvironments of RNase T1 in detail, the three-dimensional solution structure of Gln25-RNase T1 was determined by simulated-annealing calculations. As a result, the topology of the overall folding was shown to be very similar to that of the Lys25-isozyme except for some differences. In particular, there were two differences in the property of torsion angles of the two disulfide bonds and the conformations of the residues 11-13, 63-66, and 92-93. With regard to the residues 11-13, the lack of the above-mentioned salt bridge in Gln25-RNase T1 was thought to induce the conformational difference of this segment as compared with the Lys25-isozyme. Furthermore, it was proposed that the perturbation of this segment might transfer to the residues 92-93 via the two disulfide bonds.  相似文献   

13.
Site-directed and second site suppressor mutagenesis identify an intrahelical salt bridge in the eleventh transmembrane segment of UhpT, the sugar phosphate carrier of Escherichia coli. Glucose 6-phosphate (G6P) transport by UhpT is inactivated if cysteine replaces either Asp388 or Lys391 but not if both are replaced. This suggests that Asp388 and Lys391 are involved in an intrahelical salt bridge and that neither is required for normal UhpT function. This interpretation is strengthened by the finding that mutations at Lys391 (K391N, K391Q, and K391T) are recovered as revertants of the inactive D388C variant. Further work shows that although the D388C variant is null for G6P transport, movement of 32Pi by homologous Pi/Pi exchange is unaffected. This raises the possibility that this derivative may have latent function, a possibility confirmed by showing that D388C is a gain-of-function mutation in which phosphoenolpyruvate (PEP) is the preferred substrate. Added study of the Pi/Pi exchange shows that in wild type UhpT this partial reaction is readily blocked by G6P but not PEP. By contrast, in the D388C variant, Pi/Pi exchange is unaffected by G6P but is inhibited by both PEP and 3-phosphoglycerate. These latter substrates are used by PgtP, a related Pi-linked antiporter, which lacks the Asp388-Lys391 salt bridge but has instead an uncompensated arginine at position 391. For this reason, we conclude that in both UhpT and PgtP position 391 can serve as a determinant of substrate selectivity by acting as a receptor for the anionic carboxyl brought into the translocation pathway by PEP.  相似文献   

14.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

15.
The melibiose carrier from Escherichia coli is a cation-substrate cotransporter that catalyzes the accumulation of galactosides at the expense of H(+), Na(+), or Li(+) electrochemical gradients. Charged residues on transmembrane domains in the amino-terminal portion of this carrier play an important role in the recognition of cations, while the carboxyl portion of the protein seems to be important for sugar recognition. In the present study, we substituted Lys-377 on helix XI with Val. This mutant carrier, K377V, had reduced melibiose transport activity. We subsequently used this mutant for the isolation of functional second-site revertants. Revertant strains showed the additional substitutions of Val or Asn for Asp-59 (helix II), or Leu for Phe-20 (helix I). Isolation of revertant strains where both Lys-377 and Asp-59 are substituted with neutral residues suggested the possibility that a salt bridge exists between helix II and helix XI. To further test this idea, we constructed three additional site-directed mutants: Asp-59-->Lys (D59K), Lys-377-->Asp (K377D), and a double mutant, Asp-59-->Lys/Lys-377-->Asp (D59K/K377D), in which the position of these charges was exchanged. K377D accumulated melibiose only marginally while D59K could not accumulate. However, the D59K/K377D double mutant accumulated melibiose to a modest level although this activity was no longer stimulated by Na(+). We suggest that Asp-59 and Lys-377 interact via a salt bridge that brings helix II and helix XI close to one another in the three-dimensional structure of the carrier.  相似文献   

16.
The pH dependence of the enzymic properties of the phosphofructokinase from Escherichia coli was compared to those of two mutants in which one carboxyl group of the active site has been removed from either Asp127 or Asp129. All measurements of activity were made in the presence of allosteric activator ADP or GDP to eliminate any cooperative process. Asp129 is a crucial residue for the activity of phosphofructokinase since its conversion to Ser decreases the catalytic activity by 2-3 orders of magnitude in both the forward and reverse reactions, but the ionization of Asp129 is not directly related the pH dependence of phosphofructokinase activity. This pH dependence is however modified by the Asp129----Ser mutation, which decreases the pK of another residue, Asp127, by as much as pH of 1.5. The side chain of Asp127 has the catalytic role proposed earlier: its deprotonated form acts as a base in the forward reaction, and its protonated form acts as an acid in the reverse reaction. The protonated form of Asp127 is also required for the binding of fructose 1,6-bisphosphate. The electrostatic interaction between the carboxyl groups of Asp127 and Asp129 seems different in free phosphofructokinase to that in enzyme/substrate complexes, suggesting that a conformational change occurs upon substrate binding. The pH dependence of phosphofructokinase activity involves one other ionizable group with a pK of approximately 6 which does not belong to the side chains of Asp127 or Asp129.  相似文献   

17.
We have tested the hypothesis that isoaspartic acid residues in proteins can arise via errors that occur during protein synthesis. One such error involves a mischarging step in which the aspartic acid side-chain beta-carboxyl group is linked to the tRNA(Asp) instead of the main chain alpha-carboxyl group. If this altered Asp-tRNA(Asp) is a substrate for the ribosomal elongation reactions, a polypeptide will be made with an isoaspartic acid, or beta-linkage, in which the peptide chain is branched at the side chain of the aspartic acid residue. Using an ammonium sulfate fraction of aspartyl-tRNA(Asp) synthetase from Escherichia coli and [3H]aspartic acid, we have prepared [3H]aspartyl-tRNA(Asp) complexes and directly analyzed the linkage of the [3H]aspartate to the tRNA by identifying the products of ammonolysis. Normal attachment of the alpha-carboxyl group of aspartate to the tRNA produces [3H]isoasparagine, while the mischarging reaction leads to [3H]asparagine formation after ammonolysis. We have separated [3H]isoasparagine from [3H]asparagine and found an upper limit of 1 asparagine per 10,000 isoasparagines. These results show that the bacterial aminoacyl-tRNA synthetase can very accurately distinguish between the alpha- and beta-carboxyl groups of aspartic acid and suggest that only a very small fraction of the isoaspartic acid residues found to occur in cellular proteins may be the result of mischarging steps.  相似文献   

18.
Salt bridges between self-associating hen egg white (HEW) lysozyme and bovine insulin molecules were converted to covalent links by ethanedinitrile (cyanogen) and identified using mass spectrometry. Peptides resulting from cyanogen-mediated intermolecular cross-linking of HEW lysozyme were detected using in-gel digestion and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Sequence data from electrospray ionization-quadrupole-time of flight mass spectrometry (ESI-Q-TOF MS) revealed that one of the peptides has a covalent bond between Asp 66 and Arg 14. The self-assembly of bovine insulin was also investigated using cyanogen. Using high-performance liquid chromatography (HPLC) coupled with ESI-Q-TOF MS, an intermolecular salt bridge association was identified by covalently linking the B chain C-terminal carboxyl group of Ala 30 and the charged imidazole of His 5 (B chain). A method was developed incorporating cyanogen, enzymatic digestion, one-dimensional gel electrophoresis, MALDI-TOF MS, and HPLC ESI-Q-TOF MS to identify amino acid residues participating in salt bridge formations at protein-protein interfaces. The novelty of this approach is the ease with which cyanogen can be administered to a protein sample and the apparent lack of nonspecific cross-linking side reactions interfering with the analysis.  相似文献   

19.
Amyloid deposits are a hallmark of many diseases. In the case of Alzheimer's disease, a turn between 21Ala and 30Ala, stabilised by a salt bridge between 22Glu/23Asp and 28Lys, may nucleate folding and aggregation of the amyloid β (Aβ) peptide. In the present paper, we test this hypothesis by studying how salt bridge and turn formation vary with intrinsic and environmental changes, and how these changes affect folding and aggregation of the Aβ-peptide.  相似文献   

20.
Refined structure of porcine pepsinogen at 1.8 A resolution   总被引:1,自引:0,他引:1  
The molecular structure of porcine pepsinogen at 1.8 A resolution has been determined by a combination of molecular replacement and multiple isomorphous phasing techniques. The resulting structure was refined by restrained-parameter least-squares methods. The final R factor [formula: see text] is 0.164 for 32,264 reflections with I greater than or equal to sigma (I) in the resolution range of 8.0 to 1.8 A. The model consists of 2785 protein atoms in 370 residues, a phosphoryl group on Ser68 and 238 ordered water molecules. The resulting molecular stereochemistry is consistent with a well-refined crystal structure with co-ordinate accuracy in the range of 0.10 to 0.15 A for the well-ordered regions of the molecule (B less than 15 A2). For the enzyme portion of the zymogen, the root-mean-square difference in C alpha atom co-ordinates with the refined porcine pepsin structure is 0.90 A (284 common atoms) and with the C alpha atoms of penicillopepsin it is 1.63 A (275 common atoms). The additional 44 N-terminal amino acids of the prosegment (Leu1p to Leu44p, using the letter p after the residue number to distinguish the residues of the prosegment) adopt a relatively compact structure consisting of a long beta-strand followed by two approximately orthogonal alpha-helices and a short 3(10)-helix. Intimate contacts, both electrostatic and hydrophobic interactions, are made with residues in the pepsin active site. The N-terminal beta-strand, Leu1p to Leu6p, forms part of the six-stranded beta-sheet common to the aspartic proteinases. In the zymogen the first 13 residues of pepsin, Ile1 to Glu13, adopt a completely different conformation from that of the mature enzyme. The C alpha atom of Ile1 must move approximately 44 A in going from its position in the inactive zymogen to its observed position in active pepsin. Electrostatic interactions of Lys36pN and hydrogen-bonding interactions of Tyr37pOH, and Tyr90H with the two catalytic aspartate groups, Asp32 and Asp215, prevent substrate access to the active site of the zymogen. We have made a detailed comparison of the mammalian pepsinogen fold with the fungal aspartic proteinase fold of penicillopepsin, used for the molecular replacement solution. A structurally derived alignment of the two sequences is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号