首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined a replication terminus (psiL1) located on the left arm of the chromosome of Bacillus subtilis and within the yxcC gene and at or near the left replication checkpoint that is activated under stringent conditions. The psiL1 sequence appears to bind to two dimers of the replication terminator protein (RTP) rather weakly and seems to possess overlapping core and auxiliary sites that have some sequence similarities with normal Ter sites. Surprisingly, the asymmetrical, isolated psiL1 site arrested replication forks in vivo in both orientations and independent of stringent control. In vitro, the sequence arrested DnaB helicase in both orientations, albeit more weakly than the normal Ter1 terminus. The key points of mechanistic interest that emerge from the present work are: (i) strong binding of a Ter (psiL1) sequence to RTP did not appear to be essential for fork arrest and (ii) polarity of fork arrest could not be correlated in this case with just symmetrical protein-DNA interaction at the core and auxiliary sites of psiL1. On the basis of the result it would appear that the weak RTP-L1Ter interaction cannot by itself account for fork arrest, thus suggesting a role for DnaB-RTP interaction.  相似文献   

2.
T Sahoo  B K Mohanty  I Patel    D Bastia 《The EMBO journal》1995,14(3):619-628
The termination of DNA replication at a sequence-specific replication terminus in Bacillus subtilis is catalyzed by a dimeric replication terminator protein (RTP) of subunit mol. wt 14,500. RTP has become an attractive protein with which to study the molecular mechanism of termination because its crystal structure has now been solved and the previous lack of an in vitro replication system has been largely overcome by our discovery that the protein terminates replication in vivo and in vitro in the well-studied Gram-negative Escherichia coli system. We have exploited the surrogate in vitro system to show that RTP acts as a polar contrahelicase to DnaB helicase of E. coli only when two RTP dimers are bound co-operatively to overlapping core and auxiliary sequences comprising the terminus. A core sequence by itself binds one dimer of RTP, but elicits no contrahelicase activity. Binding of two RTP dimers to a tandem head-to-tail core repeat also elicits no contrahelicase activity, thus suggesting that a specific stereochemical interaction between two RTP dimers and with the terminator site is essential for termination. RTP blocks unwinding of DNA substrates containing heteroduplex regions that include the terminus and are in the size range of approximately 50 to > 1000 bp in length. Thus, the protein blocks authentic helicase-catalyzed unwinding rather than just the translocation of the helicase on DNA.  相似文献   

3.
Kaplan DL 《Current biology : CB》2006,16(17):R684-R686
The Tus-Ter protein-DNA complex of Escherichia coli blocks progression of DNA replication from only one direction at the replication terminus. As the replication fork helicase unwinds one side of Ter, a conserved cytosine flips out of the duplex and binds to Tus, thereby creating a locked complex that blocks the advancing helicase.  相似文献   

4.
DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Ter sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. In support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the RTP-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork.  相似文献   

5.
The replication terminator protein (RTP) of Bacillus subtilis impedes replication fork movement in a polar mode upon binding as two interacting dimers to each of the replication termini. The mode of interaction of RTP with the terminus DNA is of considerable mechanistic significance because the DNA-protein complex not only localizes the helicase-blocking activity to the terminus, but also generates functional asymmetry from structurally symmetric protein dimers. The functional asymmetry is manifested in the polar impedance of replication fork movement. Although the crystal structure of the apoprotein has been solved, hitherto there was no direct evidence as to which parts of RTP were in contact with the replication terminus. Here we have used a variety of approaches, including saturation mutagenesis, genetic selection for DNA-binding mutants, photo cross-linking, biochemical and functional characterizations of the mutant proteins, and X-ray crystallography, to identify the regions of RTP that are either in direct contact with or are located within 11 angstroms of the replication terminus. The data show that the unstructured N-terminal arm, the alpha3 helix and the beta2 strand are involved in DNA binding. The mapping of amino acids of RTP in contact with DNA, confirms a 'winged helix' DNA-binding motif.  相似文献   

6.
The current models that have been proposed to explain the mechanism of replication termination are (i) passive arrest of a replication fork by the terminus (Ter) DNA-terminator protein complex that impedes the replication fork and the replicative helicase in a polar fashion and (ii) an active barrier model in which the Ter-terminator protein complex arrests a fork not only by DNA-protein interaction but also by mechanistically significant terminator protein-helicase interaction. Despite the existence of some evidence supporting in vitro interaction between the replication terminator protein (RTP) and DnaB helicase, there has been continuing debate in the literature questioning the validity of the protein-protein interaction model. The objective of the present work was two-fold: (i) to reexamine the question of RTP-DnaB interaction by additional techniques and different mutant forms of RTP, and (ii) to investigate if a common domain of RTP is involved in the arrest of both helicase and RNA polymerase. The results validate and confirm the RTP-DnaB interaction in vitro and suggest a critical role for this interaction in replication fork arrest. The results also show that the Tyr(33) residue of RTP plays a critical role both in the arrest of helicase and RNA polymerase.  相似文献   

7.
UL9, the origin-binding protein of herpes simplex virus type 1 (HSV-1), has been overexpressed in an insect cell overexpression system and purified to homogeneity. In this report, we confirm and extend recent findings on the physical properties, enzymatic activities, and binding properties of UL9. We demonstrate that UL9 exists primarily as a homodimer in solution and that these dimers associate to form a complex nucleoprotein structure when bound to the HSV origin of replication. We also show that UL9 is an ATP-dependent helicase, capable of unwinding partially duplex DNA in a sequence-independent manner. Although the helicase activity of UL9 is demonstrable on short duplex substrates in the absence of single-stranded DNA-binding proteins, the HSV single-stranded DNA-binding protein ICP8 (but not heterologous binding proteins) stimulates UL9 to unwind long DNA sequences of over 500 bases. We were not able to demonstrate unwinding of fully duplex DNA sequences containing the HSV origin of replication. However, in experiments designed to detect origin-dependent unwinding, we did find that UL9 wraps supercoiled DNA independent of sequence or ATP hydrolysis.  相似文献   

8.
PriA helicase plays crucial roles in restoration of arrested replication forks. It carries a "3' terminus binding pocket" in its N-terminal DNA binding domain, which is required for high affinity binding of PriA to a fork carrying a 3'-end of a nascent leading strand at the branch. We show that the abrogation of the 3' terminus recognition either by a mutation in the 3' terminus binding pocket or by the bulky modification of the 3'-end leads to unwinding of the unreplicated duplex arm on this fork, causing potential fork destabilization. This indicates a critical role of the 3' terminus binding pocket of PriA in its "stable" binding at the fork for primosome assembly. In contrast, PriA unwinds the unreplicated duplex region on a fork without a 3'-end, potentially destabilizing the fork. However, this process is inhibited by RecG helicase, capable of regressing the fork until the 3'-end of the nascent leading strand reaches the branch. PriA now stably binds to this regressed fork, stabilizing it. Using a model arrest-fork-substrate, we reconstitute the above process in vitro with RecG and PriA proteins. Our results present a novel mechanism by which two helicases function in a highly coordinated manner to generate a structure in which an arrested fork is stabilized for further repair and/or replication restart.  相似文献   

9.
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.  相似文献   

10.
DNA binding and helicase actions of mouse MCM4/6/7 helicase   总被引:4,自引:1,他引:3  
You Z  Masai H 《Nucleic acids research》2005,33(9):3033-3047
Helicases play central roles in initiation and elongation of DNA replication. We previously reported that helicase and ATPase activities of the mammalian Mcm4/6/7 complex are activated specifically by thymine-rich single-stranded DNA. Here, we examined its substrate preference and helicase actions using various synthetic DNAs. On a bubble substrate, Mcm4/6/7 makes symmetric dual contacts with the 5′-proximal 25 nt single-stranded segments adjacent to the branch points, presumably generating double hexamers. Loss of thymine residues from one single-strand results in significant decrease of unwinding efficacy, suggesting that concurrent bidirectional unwinding by a single double hexameric Mcm4/6/7 may play a role in efficient unwinding of the bubble. Mcm4/6/7 binds and unwinds various fork and extension structures carrying a single-stranded 3′-tail DNA. The extent of helicase activation depends on the sequence context of the 3′-tail, and the maximum level is achieved by DNA with 50% or more thymine content. Strand displacement by Mcm4/6/7 is inhibited, as the GC content of the duplex region increases. Replacement of cytosine–guanine pairs with cytosine–inosine pairs in the duplex restored unwinding, suggesting that mammalian Mcm4/6/7 helicase has difficulties in unwinding stably base-paired duplex. Taken together, these findings reveal important features on activation and substrate preference of the eukaryotic replicative helicase.  相似文献   

11.
The DNA helicase encoded by gene 4 of bacteriophage T7 assembles on single-stranded DNA as a hexamer of six identical subunits with the DNA passing through the center of the toroid. The helicase couples the hydrolysis of dTTP to unidirectional translocation on single-stranded DNA and the unwinding of duplex DNA. Phe(523), positioned in a β-hairpin loop at the subunit interface, plays a key role in coupling the hydrolysis of dTTP to DNA unwinding. Replacement of Phe(523) with alanine or valine abolishes the ability of the helicase to unwind DNA or allow T7 polymerase to mediate strand-displacement synthesis on duplex DNA. In vivo complementation studies reveal a requirement for a hydrophobic residue with long side chains at this position. In a crystal structure of T7 helicase, when a nucleotide is bound at a subunit interface, Phe(523) is buried within the interface. However, in the unbound state, it is more exposed on the outer surface of the helicase. This structural difference suggests that the β-hairpin bearing the Phe(523) may undergo a conformational change during nucleotide hydrolysis. We postulate that upon hydrolysis of dTTP, Phe(523) moves from within the subunit interface to a more exposed position where it contacts the displaced complementary strand and facilitates unwinding.  相似文献   

12.
The role of simian virus 40 (SV40) large tumor antigen (T antigen) as a DNA helicase at the replication fork was studied. We found that a T-antigen hexamer complex acts during the unidirectional unwinding of appropriate DNA substrates and is localized directly in the center of the fork, contacting the adjacent double strand as well as the emerging single strands. When bidirectional DNA unwinding, initiated at the viral origin of DNA replication, was analyzed, a larger T-antigen complex that is simultaneously active at both branch points of an unwinding bubble was observed. The size and shape of this helicase complex imply that the T-antigen dodecamer complex, assembled at the origin and active in the localized melting of duplex DNA, is subsequently also used to continue DNA unwinding bidirectionally. Then, however, the dodecamer complex does not split into two hexamer subunits that track along the DNA; rather, the DNA is threaded through the intact complex, with the concomitant extrusion of single-stranded loops.  相似文献   

13.
The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA structures, blunt duplex DNA and RNA-DNA hybrids. Here, we demonstrate that UvrD also catalyzes the robust unwinding of Holliday junction substrates. To characterize this unwinding reaction we have employed steady-state helicase assays, pre-steady-state rapid quench helicase assays, DNaseI footprinting, and electron microscopy. We conclude that UvrD binds initially to the junction compared with binding one of the blunt ends of the four-way junction to initiate unwinding and resolves the synthetic substrate into two double-stranded fork structures. We suggest that UvrD, along with its mismatch repair partners, MutS and MutL, may utilize its ability to unwind Holliday junctions directly in the prevention of homeologous recombination. UvrD may also be involved in the resolution of stalled replication forks by unwinding the Holliday junction intermediate to allow bypass of the blockage.  相似文献   

14.
DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.  相似文献   

15.
The gene 4 protein of bacteriophage T7 plays a central role in DNA replication by providing both helicase and primase activities. The C-terminal helicase domain is not only responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding, but it also interacts with T7 DNA polymerase to coordinate helicase and polymerase activities. The C-terminal 17 residues of gene 4 protein are critical for its interaction with the T7 DNA polymerase/thioredoxin complex. This C terminus is highly acidic; replacement of these residues with uncharged residues leads to a loss of interaction with T7 DNA polymerase/thioredoxin and an increase in oligomerization of the gene 4 protein. Such an alteration on the C terminus results in a reduced efficiency in strand displacement DNA synthesis catalyzed by gene 4 protein and T7 DNA polymerase/thioredoxin. Replacement of the C-terminal amino acid, phenylalanine, with non-aromatic residues also leads to a loss of interaction of gene 4 protein with T7 DNA polymerase/thioredoxin. However, neither of these modifications of the C terminus affects helicase and primase activities. A chimeric gene 4 protein containing the acidic C terminus of the T7 gene 2.5 single-stranded DNA-binding protein is more active in strand displacement synthesis. Gene 4 hexamers containing even one subunit of a defective C terminus are defective in their interaction with T7 DNA polymerase.  相似文献   

16.
There are lines of evidence that the Bloom syndrome helicase, BLM, catalyzes regression of stalled replication forks and disrupts displacement loops (D-loops) formed during homologous recombination (HR). Here we constructed a forked DNA with a 3′ single-stranded gap and a 5′ double-stranded handle to partly mimic a stalled DNA fork and used magnetic tweezers to study BLM-catalyzed unwinding of the forked DNA. We have directly observed that the BLM helicase may slide on the opposite strand for some distance after duplex unwinding at different forces. For DNA construct with a long hairpin, progressive unwinding of the hairpin is frequently interrupted by strand switching and backward sliding of the enzyme. Quantitative study of the uninterrupted unwinding length (time) has revealed a two-state-transition mechanism for strand-switching during the unwinding process. Mutational studies revealed that the RQC domain plays an important role in stabilizing the helicase/DNA interaction during both DNA unwinding and backward sliding of BLM. Especially, Lys1125 in the RQC domain, a highly conserved amino acid among RecQ helicases, may be involved in the backward sliding activity. We have also directly observed the in vitro pathway that BLM disrupts the mimic stalled replication fork. These results may shed new light on the mechanisms for BLM in DNA repair and homologous recombination.  相似文献   

17.
A statistically significant similarity was demonstrated between the amino acid sequences of 4 Escherichia coli helicases and helicase subunits, a family of non-structural proteins of eukaryotic positive-strand RNA viruses and 2 herpesvirus proteins all of which contain an NTP-binding sequence motif. Based on sequence analysis and secondary structure predictions, a generalized structural model for the ATP-binding core is proposed. It is suggested that all these proteins constitute a superfamily of helicases (or helicase subunits) involved in NTP-dependent duplex unwinding during DNA and RNA replication and recombination.  相似文献   

18.
We have examined the duplex DNA unwinding (helicase) properties of the Escherichia coli helicase II protein (uvrD gene product) over a wide range of protein concentrations and solution conditions using a variety of duplex DNA substrates including fully duplex blunt ended and nicked circular molecules. We find that helicase II protein is able to initiate on and completely unwind fully duplex DNA molecules without the requirement for a covalently attached 3' single-stranded DNA tail. This DNA unwinding activity is dependent upon Mg2+ and ATP and requires that the amount of protein be in excess of that needed to saturate the resulting single-stranded DNA. Unwinding experiments on fully duplex blunt ended DNA with lengths of 341, 849, 1625, and 2671 base pairs indicate that unwinding occurs at the same high ratios of helicase II protein/nucleotide, independent of DNA length (50% unwinding requires approximately 0.6 helicase II monomers/nucleotide in 2.5 mM MgCl2, 10% glycerol, pH 7.5, 37 degrees C). Helicase II protein is also able to unwind completely a nicked circular DNA molecule containing 2671 base pairs. At lower but still high molar ratios of helicase II protein to DNA, duplex DNA molecules containing a single-stranded (ss) region attached to a 3' end of the duplex are preferentially unwound in agreement with the results obtained by S. W. Matson [1986) J. Biol. Chem. 261, 10169-10175). This preferential unwinding of duplex DNA with an attached 3' ssDNA most likely reflects the availability of a high affinity site (ssDNA) with the proper orientation for initiation; however, this may not reflect the type of DNA molecule upon which helicase II protein initiates DNA unwinding in vivo. The effects of changes in NaCl, NaCH3COO, and MgCl2 concentration on the ability of helicase II protein to unwind fully duplex DNA and duplex DNA with a 3' ssDNA tail have also been examined. Although the unwinding of fully duplex and nicked circular DNA molecules reported here occurs at higher helicase II protein to DNA ratios than have been previously used in most studies of this protein in vitro, this activity is likely to be relevant to the function of this protein in vivo since very high levels of helicase II protein accumulate in E. coli during the SOS response to DNA damage (approximately 2-5 x 10(4) copies/cell).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Characterization of the bacteriophage T4 gene 41 DNA helicase   总被引:5,自引:0,他引:5  
The T4 gene 41 protein and the gene 61 protein function together as a primase-helicase within the seven protein bacteriophage T4 multienzyme complex that replicates duplex DNA in vitro. We have previously shown that the 41 protein is a 5' to 3' helicase that requires a single-stranded region on the 5' side of the duplex to be unwound and is stimulated by the 61 protein (Venkatesan, M., Silver L. L., and Nossal, N. G. (1982) J. biol. Chem. 257, 12426-12434). The 41 protein, in turn, is required for pentamer primer synthesis by the 61 protein. We now show that the 41 protein helicase unwinds a partially duplex DNA molecule containing a performed fork more efficiently than a DNA molecule without a fork. Optimal helicase activity requires greater than 29 nucleotides of single-stranded DNA on the 3' side of the duplex (analogous to the leading strand template). This result suggests the 41 protein helicase interacts with the leading strand template as well as the lagging strand template as it unwinds the duplex region at the replication fork. As the single-stranded DNA on the 3' side of a short duplex (51 base pairs) is lengthened, the stimulation of the 41 protein helicase by the 61 protein is diminished. However, both the 61 protein and a preformed fork are essential for efficient unwinding of longer duplex regions (650 base pairs). These findings suggest that the 61 protein promotes both the initial unwinding of the duplex to form a fork and subsequent unwinding of longer duplexes by the 41 protein. A stable protein-DNA complex, detected by a gel mobility shift of phi X174 single-stranded DNA, requires both the 41 and 61 proteins and a rNTP (preferably rATP or rGTP, the nucleotides with the greatest effect on the helicase activity). In the accompanying paper, we report the altered properties of a proteolytic fragment of the 41 protein helicase and its effect on in vitro DNA synthesis in the T4 multienzyme replication system.  相似文献   

20.
Bacteriophage T4 gene 41 protein is one of the two phage proteins previously shown to be required for the synthesis of the pentaribonucleotide primers which initiate the synthesis of new chains in the T4 DNA replication system. We now show that a DNA helicase activity which can unwind short fragments annealed to complementary single-stranded DNA copurifies with the gene 41 priming protein. T4 gene 41 is essential for both the priming and helicase activities, since both are absent after infection by T4 phage with an amber mutation in gene 41. A complete gene 41 product is also required for two other activities previously found in purified preparations of the priming activity: a single-stranded DNA-dependent GTPase (ATPase) and an activity which stimulates strand displacement synthesis catalyzed by T4 DNA polymerase, the T4 gene 44/62 and 45 polymerase accessory proteins, and the T4 gene 32 helix-destabilizing protein (five-protein reaction). The 41 protein helicase requires a single-stranded DNA region adjoining the duplex region and begins unwinding at the 3' terminus of the fragment. There is a sigmoidal dependence on both nucleotide (rGTP, rATP) and protein concentration for this reaction. 41 Protein helicase activity is stimulated by our purest preparation of the T4 gene 61 priming protein, and by the T4 gene 44/62 and 45 polymerase accessory proteins. The direction of unwinding is consistent with the idea that 41 protein facilitates DNA synthesis on duplex templates by destabilizing the helix as it moves 5' to 3' on the displaced strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号