首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Depolarization-induced release of [3H] γ -aminobutyric acid ([3H]-GABA) from preloaded slices of rat cerebral cortex was inhibited by muscimol and THIP in a dose-dependent fashion. This inhibition of release was prevented by the GABA antagonists bicuculline and picrotoxin. These results confirm previous reports postulating the existence of GABA autoreceptors on GABAergic terminals. Since benzodiazapines are known to facilitate postsynaptic GABA actions, the effect of flunitrazepam on the inhibition of GABA release mediated through the autoreceptors has been examined. At a concentration of 1 μ m or 10 μ m , flunitrazepam had no effect on the IC50 values for muscimol or THIP in inhibiting stimulated GABA release. It thus seems that GABA autoreceptors are not functionally coupled to benzodiazepine receptors in rat cerebral cortex.  相似文献   

2.
Abstract— The uptake and binding of [3H]GABA and the binding of [3H]muscimol were measured in cell-free fractions of crayfish muscle. The uptake of GABA was saturable, of high affinity ( K m= 0.5μ m ), and inhibited by low concentrations of compounds believed to block GABA uptake specifically, such as nipecotic acid and 2,4,diaminobutyric acid. The GABA uptake activity was localized to sucrose gradient fractions enriched in sarcolemma as demonstrated by marker enzymes and electron microscopy. The binding of the potent GABAergic agonist muscimol was also localized to the sarcolemma. The binding was saturable, of high affinity (K D = 9 n m ), and inhibited by GABA (K 1 = 125 n m ) and by low concentrations of receptor-specific GABA analogues, such as isoguvacine, imidazole acetic acid, and 3-aminopropane sulfonic acid. The rank order for inhibition by GABA analogues of [3H]muscimol binding sites correlated very well with activity on GABA synapses in invertebrates, consistent with specific postsynaptic receptor labeling.  相似文献   

3.
Abstract: Uptake and release of cysteine sulfinic acid by synaptosomal fractions (P2) and slices of rat cerebral cortex were investigated. The P2 fraction had a Na+-dependent high-affinity uptake system for cysteine sulfinic acid (Km, 12μM), which was restricted to the synaptosomes. High-affinity uptake of cysteine sulfinic acid was competitively inhibited by glutamate, aspartate, and cysteic acid. None of the various centrally acting drugs tested specifically inhibited this transport system. Release of [14C]cysteine sulfinic acid from preloaded cortical slices or P2 fractions was examined by a superfusion method, which avoided reuptake of released [14C]cysteine sulfinic acid. High K+ (56 m M ) and veratridine (10μM) stimulated the release of cysteine sulfinic acid from slices and the P2 fraction in a partly Ca2+-dependent manner. Diazepam at concentrations of 10 and 100 μM markedly inhibited the stimulated release, but not the spontaneous release, by cortical slices. On the contrary, it had no effect on the stimulated release of cysteine sulfinic acid from the P2 fraction.  相似文献   

4.
Abstract— Evidence is presented that glycine is taken up by two different transport systems in rat CNS tissue slices; one system has relatively low affinity for glycine (Km = 300 μ m ) and predominates in cerebral cortex, cerebellum and mid-brain, the other has a higher affinity for glycine (Km = 40 μ m ) and is detectable only in spinal cord, medulla and pons. The low affinity transport system appears to be shared by other small neutral amino acids, whereas the high affinity system is very specific for glycine. Both transport systems were shown to be present in particles in homogenates of CNS tissue by incubation with glycine in vitro , and subcellular fractionation studies suggested that synaptosomes were partly responsible for such uptake. Various substances were tested as inhibitors of the high affinity uptake system for glycine in spinal cord slices; the most potent inhibitors were p -chloro-mercuriphenylsulphonate, N -ethylmaleimide, chlorpromazine, imipramine, desipramine, hydrazinoacetic acid and haloperidol. No competitive inhibitors of the high affinity glycine uptake were found. It is suggested that the high affinity transport system is associated with inhibitory synapses where glycine is a transmitter.  相似文献   

5.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

6.
Abstract— A series of compounds structurally related to muscimol (5-aminomethyl-3-isoxazolol) was tested as inhibitors of the sodium-independent binding of GABA to membranes from rat brain. Muscimol, 5-(l-aminoethyl)-3-isoxazolol, 5-(2-aminoethyl)-3-isoxazolol (homomuscimol), and the bicyclic derivative 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) were relatively potent inhibitors of GABA binding. THIP is an analogue of muscimol locked in a folded conformation. The structurally related compound 1,2,3,6-tetrahydropyridine-4-carboxylic acid (isoguvacine), a semirigid analogue of trans-4-aminocrotonic acid, was also a potent inhibitor of GABA binding. Apart from muscimol, these inhibitors of GABA binding did not influence the sodium-dependent,'high-affinity' uptake of GABA in rat brain slices, whereas the potent GABA uptake inhibitors guvacine and nipecotic acid did not influence GABA binding. The present results support previous findings that different conformational modes of GABA interact with GABA postsynaptic receptors and the neuronal GABA transport system in rat brain, and indicate that the 'active conformation' of GABA with respect to the receptors is partially folded and almost planar. Based on a comparison of the present results with previous in vivo studies the structural requirements for GABA-like activity in rat cerebral cortex and cat spinal cord seem to be somewhat different.  相似文献   

7.
Abstract: Two groups of GABA (γ-aminobutyric acid) analogues, one comprising derivatives of β-proline and the other compounds structurally related to nipecotic acid, were investigated as potential inhibitors of high-affinity GABA transport in neurons and glial cells, as well as displacers of GABA receptor binding. In addition to cis -4-hydroxynipecotic acid, which is known as a potent inhibitor of GABA uptake, homo-β-proline was the only compound which proved to be a potent inhibitor of glial as well as neuronal GABA uptake. IC50 values for GABA uptake into glial cells and brain cortex "prisms" were 20 and 75 μM, respectively, and the IC50 value obtained for GABA uptake into cultured neurons was 10 μM. A kinetic analysis of the action of homo-β-proline on GABA uptake into cultured astrocytes and neurons showed that this compound acts as a competitive inhibitor of GABA uptake in both cell types. From the apparent K m values, K i values for homo-β-proline of 16 and 6 μM could be calculated for glial and neuronal uptake, respectively. This mechanism of action strongly suggests that homo-β-proline interacts with the GABA carriers. Furthermore, homo-β-proline also displaced GABA from its receptor with an IC50 value of 0.3 μM. The cis -4-hydroxynipecotic acid analogues, cis- and trans-4-mercaptonipecotic acid, had no inhibitory effect on glial or neuronal GABA uptake. Other SH reagents, PCMB, NEM and DTNB, were shown to be relatively weak inhibitors of GABA uptake into cultured astrocytes, suggesting that SH groups are not directly involved in the interaction between GABA and its transport carrier.  相似文献   

8.
Abstract: Four catalytic inhibitors of GABA aminotransferase (gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate) as well as aminooxyacetic acid and valproate were studied for effects on neurochemical assays for GABA synthesis, receptor binding, uptake and metabolism in mouse and rat brain preparations. Gabaculine did not interfere with GABA synthesis as reflected by the activity of glutamate decarboxylase (GAD), it was only a weak inhibitor (IC50= 0.94 mM) of GABA receptor binding sites but was a moderately potent inhibitor of GABA uptake (IC50= 81 μM) and very potent (IC50= 1.8 μM) with respect to inhibition of the GABA-metabolizing enzyme GABA aminotransferase (GABA-T). γ-Acetylenic GABA was a weak inhibitor of GAD and GABA binding (IC50 > 1 mM), but virtually equipotent to inhibit uptake and metabolism of GABA (IC50 560 and 150 μM, respectively). This was very similar to γ-vinyl GABA, except that this drug did not decrease GAD activity. Ethanolamine O -sulphate was found to show virtually no inhibition of GAD and GABA uptake, but was a fairly potent inhibitor of GABA binding (IC50= 67 μM) and in this respect, 500 times more potent than as an inhibitor of GABA-T. Aminooxyacetic acid was a powerful inhibitor of both GAD and GABA-T (IC50 14 and 2.7 μM, respectively), but had very little affinity to receptor and uptake sites for GABA. Valproate showed no effects on GABA neurochemical assays which could be related to anticonvulsant action. The present results suggest that the anticonvulsant properties of the four catalytic inhibitors of GABA-T tested are at least in part mediated through a direct influence on GABA receptors and uptake sites.  相似文献   

9.
Abstract— Fifty-two substances were tested as inhibitors of the uptake of [3H]GABA in slices of rat cerebral cortex. Among GABA analogues tested, only the 2-fluoro, 3-hydroxy and 2-amino compounds had affinities for the uptake mechanism comparable to that of GABA. [3H]GABA uptake was also potently inhibited by p -chloromercuriphenylsulphonate, N -ethylmaleimide, chlorpromazine and haloperidol. No inhibitors were found to act in a competitive manner with respect to GABA. [3H]GABA uptake was also examined in homogenates of cerebral cortex and other regions of CNS. There was a rapid uptake of [3H]GABA into particles when homogenate samples were incubated with the labelled amino acid; this uptake had similar kinetic properties and inhibitor sensitivity to that observed in slices of intact tissue. Density gradient centrifugation experiments indicated that the particles responsible for the uptake of [3H]GABA in homogenates were probably synaptosomes. Uptake of [3H]GABA also occurred in slices and homogenates of rat spinal cord, and evidence was obtained by the simultaneous labelling of homogenates with [14C]glycine and [3H]GABA that these two amino acids were taken up by different nerve terminals in this region.  相似文献   

10.
Abstract: (RS)-Nipecotic acid is taken up into cultured astrocytes by a saturable high-affinity transport system with a Km, of 28.8 ± 2.8 μM and a Vmax of 0.294 ± 0.022 nmol × min−1× [mg cell protein]−1. The uptake which represents a net inward transport was sodium-dependent, requiring translocation of one sodium ion for each molecule of nipecotic acid taken up. The most potent inhibitors of GABA uptake into astrocytes (GABA, (R)-nipecotic acid, (3RS,4SR)-4-hydroxynipecotic acid, and guvacine) were shown to be potent inhibitors of nipecotic acid uptake (IC50) 20, 25, 25, and 50 μm respectively), GABA being a competitive inhibitor. (S)-2,4-Diaminobutyric acid was a more efficient inhibitor than β-alanine of glial uptake of (RS)-nipecotic acid. It is concluded that astroglial uptake of (RS)-nipecotic acid and GABA is mediated by the same transport system.  相似文献   

11.
Abstract: Dimethylaminoethanol was studied both as a substrate and as an inhibitor of choline uptake in long-term cultures of foetal rat cerebral hemispheres. A saturable component with an apparent Km of 28 μM and Vmax of 11 pmol/min/μg DNA for dimethylaminoethanol, was observed. Like choline, dimethylaminoethanol was also taken up by a second, low-affinity component, the apparent Vmax of which was about 102 pmol/min/μg DNA. Dimethylaminoethanol inhibited the high-affinity but not the low-affinity choline uptake in a competitive manner with an apparent inhibition constant of 6.0 μM. Monomethylaminoethanol (K1# 60 μM) competitively inhibited high-affinity choline transport. At low concentrations hemicholinium-3, but not ethanolamine, effectively inhibited high-affinity uptake of choline and to a lesser degree the uptake of the dimethylaminoethanol. While the high-affinity uptake of both substrates was inhibited by high concentrations of hemicholinium-3 or ethanolamine, the low-affinity system was not affected by hemicholinium-3. From the kinetics of uptake and inhibition patterns of choline and its related analogs, the methyl group seems to play a major role in determining the affinity rate constants for these substrates. The maximum rate of choline uptake via the high-affinity component increases about sixfold during a period of 2 weeks. In the absence of serum the maximum velocity of the high-affinity component is greatly reduced. These observations suggest that the high-affinity choline uptake component is an integral property and a useful marker, of the developing cerebral cells.  相似文献   

12.
Abstract— —The uptake of taurine into tissue slices of specific regions of the rat central nervous system (CNS) was compared with the uptake of taurine into synaptosomal fractions prepared from the corresponding regions. Two different techniques for performing control experiments were also compared: procedure I, correction for the uptake of taurine obtained from duplicate incubations but at 2°c and procedure II, correction of taurine uptake into extracellular or extrasynaptosomal space measured by inulin uptake experiments plus correction for diffusion (non-saturable) processes.
Kinetic analyses of the uptake data in tissue slices utilizing the procedure I correction technique indicate that six regions of the rat CNS (spinal cord, diencephalon, cortex, striatum, hippocampus, and midbrain) possess high affinity uptake systems (Km values approx 60 μM or less). The Km value for the cerebellum (105.4 ± 15.7 μM) is intermediate between a high and low affinity uptake system while the Km value for the pons-medulla (210.0 12.4 μM) is considered to be low affinity. When procedure II techniques were utilized for correcting the uptake data all eight regions demonstrated high affinity uptake systems (11.8–73.2μM).
Synaptosomal fractions prepared from the spinal cord, pons-medulla, diencephalon, and midbrain demonstrate high affinity uptake systems (procedure I) for taurine (10.3–47.2 μM) while the hippocampus, cortex, striatum, and cerebellum have intermediate (but still high affinity) values (59.4–96.4 μM). High affinity uptake systems (8.2–79.8 μM) were obtained for all eight regions of the rat CNS when procedure II was utilized for correction of the data.  相似文献   

13.
Abstract: The rat ventral tegmentum (containing dendrites and somata of mesolimbic neurones) contained 1.3 μg/g of dopamine, which was reduced to 40% of the control level by reserpine. Slices of ventral tegmentum were able to accumulate and release (elevated potassium or protoveratrine A) exogenous [3H]dopamine. In parallel studies the uptake mechanism in ventral tegmentum was shown to be virtually identical to the nerve terminal uptake of [3H]dopamine by slices of nucleus accumbens. The release of [3H]dopamine was indistinguishable from that observed in substantia nigra, where there is substantial evidence for dendritic mechanisms. Basal adenylate cyclase activity was present, but dopamine-stimulated activity was not detected. A high GABA concentration (7.7 μmol/g) was present in ventral tegmentum, in conjunction with an uptake and a release mechanism for [3H]GABA. GABA and muscimol elicited a small, reproducible efflux of [3H]dopamine, but an interaction between dopamine and [3H]GABA efflux was not observed. The results are in accord with transmitter roles for dopamine and GABA in the somatoden-dritic area of mesolimbic dopaminergic neurons.  相似文献   

14.
Abstract: [35S]r-Butylbicyclophosphorothionate (TBPT), a cage convulsant with picrotoxinin-like activity, binds to rat brain membranes to a single site with an apparent KD of 25.1 ± 5.6 n M and a Bmax of 1.40 ± 0.22 pmol/mg protein. TBPT binding to rat brain membranes was inhibited by a variety of convulsant, depressant, anxiolytic, and anticonvulsant drugs that had previously been shown to inhibit [3H]a-dihydropicrotoxinin binding. Depressant drugs such as pentobarbital and the nonbarbiturate (+)etomidate inhibited TBPT binding in an uncompetitive manner. Thus, pentobarbital and (+)etomidate decreased both the affinity and the number of binding sites of TBPT to whole brain membranes. The IC50 values of (+)etomidate (9 μ M ) and pentobarbital (90 μ M ) are similar to the EC50 values at which they enhance both [3H]-γ-aminobutyric acid and [3H]diazepam binding in cerebral cortex membranes. RO5–4864, which has recently been shown to be a convulsant, also inhibited TBPT binding (IC50= 10 μ M ). These results suggest that TBPT binds to the picrotoxinin site and further supports the notion that the picrotoxinin site is an important modulatory site at the benzodiazepine-GABA receptor-ionophore complex.  相似文献   

15.
Abstract: The rat ventral tegmentum (containing somata and dendrites of mesolimbic dopaminergic neurones) contained 1.3 μmnol/g wet weight of glycine. Slices of ventral tegmentum accumulated exogenous [3H]glycine by an energy-, temperature- and sodium-dependent mechanism. The uptake was mediated by two different transport systems; one system with relatively low affinity for glycine ( Km ∼400 μ m ) and the other a higher affinity for glycine ( Km ∼ 10 μ m ). Small amino acid analogues of glycine inhibited the uptake process, the most potent being taurine and β-alanine (47% and 44% inhibition, respectively, at 1 m m ). Release of exogenous [3H]glycine by elevated potassium and by protoveratrine A was calcium-dependent and tetrodotoxin-sensitive. Glycine (500 μ m -2 m m ) potentiated the protoveratrine A-induced release of exogenous [3H]dopamine from slices of ventral tegmentum; this potentiation was blocked by strychnine (10 μ m ). A convulsant dose of strychnine elevated the concentration of 3,4-dihydroxyphenylacetic acid in the ventral tegmentum. Glycine is likely to be a transmitter in the ventral tegmentum and to have a role regulating the activity of somatodendritic regions of mesolimbic dopaminergic neurones.  相似文献   

16.
R(-)-Nipecotic acid was a more potent inhibitor than the S(+)-isomer of the uptake of GABA, (+)-nipecotic acid, and β-alanine in rat brain slices. (-)-Nipecotic acid was an order of magnitude more potent as an inhibitor of GABA uptake than as an inhibitor of β-alanine uptake, whereas the (+)-isomer was less selective. (–)-Nipecotic acid was a weak inhibitor of L-proline uptake and of rat brain acetylcholinesterase activity. Kinetic studies showed that both isomers of nipecotic acid were competitive inhibitors of GABA uptake when added at the same time as GABA, but non-competitive inhibitors when preincubated with the tissue for 15 min before addition of GABA. The apparent slope inhibition constants, which were not influenced by preincubation, indicated that (–)-nipecotic acid has an affinity for the carrier some 5 times higher than that for (+)-nipecotic acid. (–)-Nipecotic acid stimulated the release of preloaded radioactive GABA from rat brain slices. These observations indicate that (–)-nipecotic acid is a substrate-competitive inhibitor of GABA which combines with the GABA carrier and is taken up. (?)-Nipecotic acid and (+)-2,4-diaminobutyric acid, on the basis of their absolute structures and inhibition kinetics, are proposed to interact in a similar way with the GABA transport system.  相似文献   

17.
Abstract— The high affinity uptake system for l -glutamate and l -aspartate in rat cerebral cortex may not be specific for these likely excitatory synaptic transmitters, as threo-3-hydroxy- dl -aspartate, l -cysteinesulphinate, l -cysteate and d -aspartate strongly inhibit the observed high affinity uptake of l -[3H]glutamate by rat brain slices in a manner consistent with linear competitive inhibition. These substances should therefore be considered as possible substrates for the transport system. Each of these four acidic amino acids excites central neurones in a manner similar to excitation induced by l -glutamate, and as each might occur in brain tissue, their possible synaptic role should be investigated.
l -Glutamate high affinity uptake was shown to be sodium-dependent, but under certain conditions appeared to be less sensitive than GABA uptake to changes in the external sodium ion concentration, and to drugs which modify sodium ion movements. This may be relevant to the efficiency of the glutamate uptake process during synaptic depolarization induced by glutamate.
l -Glutamate high affinity uptake was inhibited in a relatively nonspecific manner by a variety of drugs including mercurials and some electron transport inhibitors.  相似文献   

18.
Abstract— [3H]β-Alanine was accumulated by frog spinal cord slices by two transport components with estimated Km values of 31 M ('high-affinity') and 11 HIM ('low affinity') respectively. The high affinity uptake exhibited sodium ion and energy dependence, temperature sensitivity, had a very low Vmax (10.4 nmol/g/min) compared to GABA and glycine, was competitively inhibited by GABA (Kt 2 M), and was significantly reduced by the presence of glycine and of taurine in the incubating medium.
When slices preloaded with [3H]β-alanine were superfused with medium containing depolarizing concentrations of potassium ions, there was a small, but consistent, increase in [3H]β-alanine efflux: 1.4 times prestimulation rates in 40 mM potassium. When the superfusate was altered by omission of calcium and addition of concentrations of magnesium (10 mm), manganese (1 mM), and cobalt (1 mM) ions sufficient to block reflex transmission in the isolated in vitro frog cord, the potassium-evoked release was not blocked. Release was decreased by lanthanum ions (1 mM). Release of [3H]GABA and [3H]glycine in parallel experiments was inhibited by magnesium, manganese, cobalt and lanthanum. Veratridine significantly increased the release of [3H]GABA and [3H]glycine but not of [3H]β-alanine.
These observations demonstrate the non-specificity of β-alanine uptake and the unconventional nature of the calcium-dependence of β-alanine release and therefore do not lend support to the hypothesis that β-alanine functions as a neurotransmitter in frog spinal cord.  相似文献   

19.
Abstract— [14C]Nipecotic acid was accumulated in isolated desheathed rat dorsal root ganglia by a saturable process with K m= 48.8 μ m and V max= 2.2 nmol/g/min. The concentration of l -2.4-diamino-butyric acid required to inhibit the uptake of nipecotic acid by 50% was three times the concentration of β-alanine required to do the same. Light microscopic autoradiography indicated that the sites of uptake of [14C]nipecotic acid were principally confined to satellite glial cells. It is concluded that nipecotic acid is transported by the GABA uptake system in glia but that it has less affinity for this system than GABA.  相似文献   

20.
High-Affinity Uptake of Spermine by Slices of Rat Cerebral Cortex   总被引:8,自引:7,他引:1  
Abstract: The accumulation of the polyamine spermine into 0.1-mm prisms of rat cerebral cortex has been investigated at both 37°C and at 4°C. Kinetic analysis of the temperature-sensitive portion of uptake indicates two high-aftinity saturable components together with an unsaturable component at high concentrations. The 'very high'– affinity saturable system ( K m= 3.8 nM) was temperature- and sodium-dependent, and significantly reduced by metabolic inhibitors, findings that are consistent with an active transport system for spermine into brain tissue. The 'high'– affinity saturable component ( K m= 0.44 μM) was sodium-dependent and inhibited by ouabain, but only partially susceptible to inhibition by 2,4-dinitrophenol and sodium cyanide. The significance of these results with respect to the function of spermine in the central nervous system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号