首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Kre2p/Mnt1p alpha 1,2-mannosyltransferase is a type II membrane protein with a short cytoplasmic amino terminus, a membrane- spanning region, and a large catalytic luminal domain containing one N- glycosylation site. Anti-Kre2p/Mnt1p antibodies identify a 60-kD integral membrane protein that is progressively N-glycosylated in an MNN1-dependent manner. Kre2p/Mnt1p is localized in a Golgi compartment that overlaps with that containing the medial-Golgi mannosyltransferase Mnn1p, and distinct from that including the late Golgi protein Kex1p. To determine which regions of Kre2p/Mnt1p are required for Golgi localization, Kre2p/Mnt1p mutant proteins were assembled by substitution of Kre2p domains with equivalent sequences from the vacuolar proteins DPAP B and Pho8p. Chimeric proteins were tested for correct topology, in vitro and in vivo activity, and were localized intracellularly by indirect immunofluorescence. The results demonstrate that the NH2-terminal cytoplasmic domain is necessary for correct Kre2p Golgi localization whereas, the membrane-spanning and stem domains are dispensable. However, in a test of targeting sufficiency, the presence of the entire Kre2p cytoplasmic tail, plus the transmembrane domain and a 36-amino acid residue luminal stem region was required to localize a Pho8p reporter protein to the yeast Golgi.  相似文献   

2.
Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.  相似文献   

3.
The enzymatic transfer of the sugar mannose from activated sugar donors is central to the synthesis of a wide range of biologically significant polysaccharides and glycoconjugates. In addition to their importance in cellular biology, mannosyltransferases also provide model systems with which to study catalytic mechanisms of glycosyl transfer. Mannosylglycerate synthase (MGS) catalyzes the synthesis of α-mannosyl-D-glycerate using GDP-mannose as the preferred donor species, a reaction that occurs with a net retention of anomeric configuration. Past work has shown that the Rhodothermus marinus MGS, classified as a GT78 glycosyltransferase, displays a GT-A fold and performs catalysis in a metal ion-dependent manner. MGS shows very unusual metal ion dependences with Mg(2+) and Ca(2+) and, to a lesser extent, Mn(2+), Ni(2+), and Co(2+), thus facilitating catalysis. Here, we probe these dependences through kinetic and calorimetric analyses of wild-type and site-directed variants of the enzyme. Mutation of residues that interact with the guanine base of GDP are correlated with a higher k(cat) value, whereas substitution of His-217, a key component of the metal coordination site, results in a change in metal specificity to Mn(2+). Structural analyses of MGS complexes not only provide insight into metal coordination but also how lactate can function as an alternative acceptor to glycerate. These studies highlight the role of flexible loops in the active center and the subsequent coordination of the divalent metal ion as key factors in MGS catalysis and metal ion dependence. Furthermore, Tyr-220, located on a flexible loop whose conformation is likely influenced by metal binding, also plays a critical role in substrate binding.  相似文献   

4.
The cell surface of Candida albicans is enriched with highly glycosylated mannoproteins that are involved in the interaction with host tissues. N- and O-glycosylation are post-translational modifications that initiate in the endoplasmic reticulum, and finalize in the Golgi. The KRE2/MNT1 family encode a set of multifunctional mannosyltransferases that participate in O-, N- and phosphomannosylation. In order to gain insights into the substrate specificities of these enzymes, recombinant forms of Mnt1, Mnt2, and Mnt5 were expressed in Pichia pastoris and the enzyme activities characterized. Mnt1 and Mnt2 showed a high specificity for α-methylmannoside and α1,2-mannobiose as acceptor substrates. Notably, they also used Saccharomyces cerevisiaeO-mannans as acceptors and generated products with more than three mannose residues, suggesting than Mnt1 and Mnt2 could be the mannosyltransferases adding the fourth and fifth mannose residue to the O-mannans in C. albicans. Mnt5 only recognized α-methylmannoside as acceptor, suggesting that participates in the addition of the second mannose residues to the N-glycan outer chain.  相似文献   

5.
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.  相似文献   

6.
Glycoglycerolipids are structural components of mycoplasma membranes with a fundamental role in membrane properties and stability. Their biosynthesis is mediated by glycosyltransferases (GT) that catalyze the transfer of glycosyl units from a sugar nucleotide donor to diacylglycerol. The essential function of glycolipid synthases in mycoplasma viability, and the absence of glycoglycerolipids in animal host cells make these GT enzymes a target for drug discovery by designing specific inhibitors. However, rational drug design has been hampered by the lack of structural information for any mycoplasma GT. Most of the annotated GTs in pathogenic mycoplasmas belong to family GT2. We had previously shown that MG517 in Mycoplasma genitalium is a GT-A family GT2 membrane-associated glycolipid synthase. We present here a series of structural models of MG517 obtained by homology modeling following a multiple-template approach. The models have been validated by mutational analysis and refined by long scale molecular dynamics simulations. Based on the models, key structure-function relationships have been identified: The N-terminal GT domain has a GT-A topology that includes a non-conserved variable region involved in acceptor substrate binding. Glu193 is proposed as the catalytic base in the GT mechanism, and Asp40, Tyr126, Tyr169, Ile170 and Tyr218 define the substrates binding site. Mutation Y169F increases the enzyme activity and significantly alters the processivity (or sequential transferase activity) of the enzyme. This is the first structural model of a GT-A glycoglycerolipid synthase and provides preliminary insights into structure and function relationships in this family of enzymes.  相似文献   

7.
Hydrophobic cores are fundamental structural properties of proteins typically associated with protein folding and stability; however, how the hydrophobic core shapes protein evolution and function is poorly understood. Here, we investigated the role of conserved hydrophobic cores in fold-A glycosyltransferases (GT-As), a large superfamily of enzymes that catalyze formation of glycosidic linkages between diverse donor and acceptor substrates through distinct catalytic mechanisms (inverting versus retaining). Using hidden Markov models and protein structural alignments, we identify similarities in the phosphate-binding cassette (PBC) of GT-As and unrelated nucleotide-binding proteins, such as UDP-sugar pyrophosphorylases. We demonstrate that GT-As have diverged from other nucleotide-binding proteins through structural elaboration of the PBC and its unique hydrophobic tethering to the F-helix, which harbors the catalytic base (xED-Asp). While the hydrophobic tethering is conserved across diverse GT-A fold enzymes, some families, such as B3GNT2, display variations in tethering interactions and core packing. We evaluated the structural and functional impact of these core variations through experimental mutational analysis and molecular dynamics simulations and find that some of the core mutations (T336I in B3GNT2) increase catalytic efficiency by modulating the conformational occupancy of the catalytic base between “D-in” and acceptor-accessible “D-out” conformation. Taken together, our studies support a model of evolution in which the GT-A core evolved progressively through elaboration upon an ancient PBC found in diverse nucleotide-binding proteins, and malleability of this core provided the structural framework for evolving new catalytic and substrate-binding functions in extant GT-A fold enzymes.  相似文献   

8.
A cell-free particulate enzyme preparation of Mycobacterium smegmatis ATCC 607 catalyzed the transfer of labeled mannose from GDP[14C] mannose to methyl-alpha-D-mannopyranoside (an exogenously added acceptor) to form a product that was characterized to be 2-O-alpha-D[14C] mannopyranosyl-methyl-alpha-D-mannopyranoside. This transmannosylase activity was specific for both the sugar nucleotide donor and methyl monosaccharide acceptor. The reaction was stimulated by the addition of various metal ions and had a pH optimum of 6.0. The apparent Km of this transmannosylase reaction for methyl-alpha-D-mannopyranoside was 35 mM. The possible relationship between this "artificial" mannosyl-transfer system and the "natural" system which leads to the formation of the oligomannosides and glycoproteins is discussed.  相似文献   

9.
The waaJ, waaT, and waaR genes encode alpha-1,2-glycosyltransferases involved in synthesis of the outer core region of the lipopolysaccharide of Escherichia coli. They belong to the glycosyltransferase CAZy family 8, characterized by the GT-A fold, DXD motifs, and by retention of configuration at the anomeric carbon of the donor sugar. Each enzyme adds a hexose residue at the same stage of core oligosaccharide backbone extension. However, they differ in the epimers for their donor nucleotide sugars, and in their acceptor residues. WaaJ is a UDP-glucose: (galactosyl) LPS alpha-1,2-glucosyltransferase, whereas WaaR and WaaT have UDP-glucose:(glucosyl) LPS alpha-1,2-glucosyltransferase and UDP-galactose:(glucosyl) LPS alpha-1,2-galactosyltransferase activities, respectively. The objective of this work was to examine their ability to utilize alternate donors and acceptors. When expressed in the heterologous host, each enzyme was able to extend the alternate LPS acceptor in vivo but they retained their natural donor specificity. In vitro assays were then performed to test the effect of substituting the epimeric donor sugar on incorporation efficiency with the natural LPS acceptor of the enzyme. Although each enzyme could utilize the alternate donor epimer, activity was compromised because of significant decreases in k(cat) and corresponding increases in K(m)(donor). Finally, in vitro assays were performed to probe acceptor preference in the absence of the cellular machinery. The results were enzyme-dependent: while an alternate acceptor had no significant effect on the kinetic behavior of His(6)-WaaT, His(6)-WaaJ showed a significantly decreased k(cat) and increased K(m)(acceptor). These results illustrate the differences in behavior between closely related glycosyltransferase enzymes involved in the synthesis of similar glycoconjugates and have implications for glycoengineering applications.  相似文献   

10.
Glycosyltransferases (GTs) are among the largest groups of enzymes found and are usually classified on the basis of sequence comparisons into many families of varying similarity (CAZy systematics). Only two different Rossman-like folds have been detected (GT-A and GT-B) within the small number of established crystal structures. A third uncharacterized fold has been indicated with transmembrane organization (GT-C). We here use a method based on multivariate data analyses (MVDAs) of property patterns in amino acid sequences and can with high accuracy recognize the correct fold in a large data set of GTs. Likewise, a retaining or inverting enzymatic mechanism for attachment of the donor sugar could be properly revealed in the GT-A and GT-B fold group sequences by such analyses. Sequence alignments could be correlated to important variables in MVDA, and the separating amino acid positions could be mapped over the active sites. These seem to be localized to similar positions in space for the alpha/beta/alpha binding motifs in the GT-B fold group structures. Analogous, active-site sequence positions were found for the GT-A fold group. Multivariate property patterns could also easily group most GTs annotated in the genomes of Escherichia coli and Synechocystis to proper fold or organization group, according to benchmarking comparisons at the MetaServer. We conclude that the sequence property patterns revealed by the multivariate analyses seem more conserved than amino acid types for these GT groups, and these patterns are also conserved in the structures. Such patterns may also potentially define substrate preferences.  相似文献   

11.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

12.
M H Gold  H J Hahn 《Biochemistry》1976,15(9):1808-1814
Particulate membrane preparations from Neurospora crassa incorporated mannose from GDP-[14C] mannose into endogenous lipid and particulate protein acceptors. Synthesis of the mannosyl lipid is reversible in the presence of GDP. Chemical and chromatographic characterization of the mannosyl lipid suggest that it is a mannosylphosphorylpolyisoprenol. The other endogenous acceptor was precipitated by trichloracetic acid. Gel filtration and electrophoresis studies before and after treatment with proteolytic enzymes indicate that the second acceptor is a glycoprotein(s). beta Elimination studies on the mannosyl protein formed from GDP-[14C] mannose with Mg2+ in the reaction mixture or formed from mannosyl lipid indicate thad with the peptide chain. Several lines of evidence indicate that in Neurospora crassa the mannosyl lipid is an obligatory intermediate in the in vitro mannosylation of the protein. (a) At 15 degrees C the initial formation of the mannosyl lipid is faster than the initial formation of the mannosyl protein. (b) Exogenous partially purified mannosyl lipid can function as a mannosyl donor for the synthesis of the mannosyl protein. This reaction was also dependent on a divalent metal. The rate of this reaction was optimal at a concentration of Triton X-100 which effectively inhibited the transfer of mannose from GDP-[14C] mannose to lipid and protein, indicating that GDP-mannose was not an intermediate in the transfer of mannose from lipid to protein. The mannosyl protein formed in this reaction was indistinguishable by several criteria from the mannosyl protein formed from GDP-[14C] mannose and Mg2+. (c) The effect of a chase with an excess of unlabeled GDP-mannose on the incorporation of mannose into endogenous acceptors was immediate cessation of the synthesis and subsequent turnover of the mannosyl lipid; in contrast, however, incorporation of mannose into protein continued and was proportional to the loss of mannose from the mannosyl lipid.  相似文献   

13.

Background

Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain ∼70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.

Principal Findings

We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.

Conclusions/Significance

Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes.  相似文献   

14.
[Gly(4)]deltorphin (Tyr-D-Ala-Phe-Gly-Val-Val-Gly-NH(2)) is a nonselective analogue of the opioid heptapeptides isolated from Phyllomedusa amphibian skin. Its nonselective nature allows for simultaneous characterization of the effects of sequence modification on both delta (delta) and mu (mu) receptor binding. The N-terminal regions of opioid peptides are considered to be responsible for receptor recognition, and the tyrosine at position one is relatively intolerant to alteration. In order to further investigate the role of the phenolic hydroxyl group in receptor interaction, a series of peptides was synthesized in which the position-one tyrosine residue was replaced with analogues of varying electronic, steric, and acid/base character, including ring-substituted tyrosines, para-substituted phenylalanines, and other nonaromatic and heterocyclic amino acids. The effects of these replacements on delta and mu receptor affinities were measured and then analyzed through quantitative structure-activity relationship (QSAR) calculations. Results support a dual hydrogen bond donor/acceptor role for the Tyr(1) hydroxyl moiety, with less acidic hydroxyl groups exhibiting stronger binding to opioid receptors. In addition, steric bulk in the Tyr(1) position independently strengthens mu and possibly delta binding, presumably by either a ligand conformational effect or enhanced van der Waals interactions with a 'loose' receptor site. The pK(a) effect is stronger on delta than on mu binding, generating an increase in delta selectivity with increasing residue-one pK(a).  相似文献   

15.
1. The transfer of mannose from GDP-(U-14-C)mannose into endogenous acceptors of bovine adrenal medullla and rat parotid was studied. The rapidly labelled product, a glycolipid, was partially purified and characterized. 2. It was stable to mild alkaline hydrolysis but yielded (14-C)mannose on mild acid hydrolysis. It co-chromatographed with mannosyl phosphoryl dolichol in four t.l.c. systems and on DEAE-cellulose acetate. Addition of dolichol phosphate or a dolichol phosphate-enriched fraction prepared from pig liver stimulated mannolipid synthesis. 3. The formation of mammolipid appeared reversible, since addition of GDP to a system synthesizing the mannolipid caused a rapid loss of label from the mannolipid. UDP-N-acetylglucosamine did not inhibit mannolipid synthesis except at high concentrations (2 mM), even though in the absence of GDP-mannose, N-acetylglucosamine was incorporated into a lipid having the properties of a glycosylated polyprenyl phosphate. 4. Mannose from GDP-mannose was also incorporated into two other acceptors, (2y being insoluble in chloroform-methanol (2:1, v/v) but soluble in choloroform-methanol-water (10:10:3, by vol.) and (ii) protein. These are formed much more slowly than the mannolipid. 5. Exogenous mannolipid served as a mannose donor for acceptors (i) and (ii), and it is suggested that transfer of mannose from GDP-mannose to mannosylated protein occurs via two intermediates, the mannolipid and acceptor (i).  相似文献   

16.
The binding of galactose-specific lectins from Erythrina indica (EIL), Erythrina arborescens (EAL), Ricinus communis (agglutinin; RCA-I), Abrus precatorius (agglutinin; APA), and Bandeiraea simplicifolia (lectin I; BSL-I) to fluoro-, deoxy-, and thiogalactoses were studied in order to determine the strength of hydrogen bonds between the hydroxyl groups of galactose and the binding sites of the proteins. The results have allowed insight into the nature of the donor/acceptor groups in the lectins that are involved in hydrogen bonding with the sugar. The data indicate that the C-2 hydroxyl group of galactose is involved in weak interactions as a hydrogen-bond acceptor with uncharged groups of EIL and EAL. With RCA-I, the C-2 hydroxyl group forms two weak hydrogen bonds in the capacity of a hydrogen-bond acceptor and a donor. On the other hand, there is a strong hydrogen bond between the C-2 hydroxyl group of galactose, which acts as a donor, and a charged group on BSL-I. The C-2 hydroxyl group of the sugar is also a hydrogen-bond donor to APA. The lectins are involved in strong hydrogen bonds through charged groups with the C-3 and C-4 hydroxyl groups of galactose, with the latter serving as hydrogen-bond donors. The C-6 hydroxyl group of the sugar is weakly hydrogen bonded with neutral groups of EIL, EAL, and APA. With BSL-I, however, a strong hydrogen bond is formed at this position with a charged group of the lectin. The C-6 hydroxyl groups is a hydrogen-bond acceptor for EIL and EAL, a hydrogen-bond donor for APA and BSL-I, and appears not to be involved in binding to RCA-I. The data with the thiosugars indicate the involvement of the C-1 hydroxyl group of galactose in binding to EIL, EAL, and BSL-I, but not to RCA-I and APA. We have also performed a similar analysis of the binding data of fluoro- and deoxysugars to concanavalin A [Poretz, R. D. and Goldstein, I. J. (1970) Biochemistry 9, 2890-2896]. This has allowed comparison of the donor/acceptor properties and free energies of hydrogen bonding of the hydroxyl groups of methyl alpha-D-mannopyranoside to concanavalin A with the results in the present study. On the basis of this analysis, new assignments are suggested for amino acid residues of concanavalin A [corrected] that may be involved in hydrogen bonding to the sugar.  相似文献   

17.
Estrogen sulfotransferase (EST) transfers the sulfate group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to estrogenic steroids. Here we report the crystal structure of human EST (hEST) in the context of the V269E mutant-PAPS complex, which is the first structure containing the active sulfate donor for any sulfotransferase. Superimposing this structure with the crystal structure of hEST in complex with the donor product 3'-phosphoadenosine 5'-phosphate (PAP) and the acceptor substrate 17beta-estradiol, the ternary structure with the PAPS and estradiol molecule, is modeled. These structures have now provided a more complete view of the S(N)2-like in-line displacement reaction catalyzed by sulfotransferases. In the PAPS-bound structure, the side chain nitrogen of the catalytic Lys(47) interacts with the side chain hydroxyl of Ser(137) and not with the bridging oxygen between the 5'-phosphate and sulfate groups of the PAPS molecule as is seen in the PAP-bound structures. This conformational change of the side chain nitrogen indicates that the interaction of Lys(47) with Ser(137) may regulate PAPS hydrolysis in the absences of an acceptor substrate. Supporting the structural data, the mutations of Ser(137) to cysteine and alanine decrease gradually k(cat) for PAPS hydrolysis and transfer activity. Thus, Ser(137) appears to play an important role in regulating the side chain interaction of Lys(47) with the bridging oxygen between the 5'-phosphate and the sulfate of PAPS.  相似文献   

18.
Dolichyl-phosphate-mannose (Dol-P-Man) synthase catalyzes the reversible formation of a key intermediate that is involved as a mannosyl donor in at least three different pathways for the synthesis of glycoconjugates important for eukaryotic development and viability. The enzyme is found associated with membranes of the endoplasmic reticulum (ER), where it transfers mannose from the water soluble cytoplasmic donor, guanosine 5'-diphosphate (GDP)-Man, to the membrane-bound, extremely hydrophobic, and long-chain polyisoprenoid acceptor, dolichyl-phosphate (Dol-P). The enzyme from Saccharomyces cerevisiae has been utilized to investigate the structure and activity of the protein and interactions of the enzyme with Dol-P and synthetic Dol-P analogs containing fluorescent probes. These interactions have been explored utilizing fluorescence resonance energy transfer (FRET) to establish intramolecular distances within the protein molecule as well as intermolecular distances to determine the localization of the active site and the hydrophobic substrate on the enzyme's surface. A three-dimensional (3D) model of the enzyme was produced with bound substrates, Dol-P, GDP-Man, and divalent cations to delineate the binding sites for these substrates as well as the catalytic site. The FRET analysis was used to characterize the functional properties of the enzyme and to evaluate its modeled structure. The data allowed for proposing a molecular mechanism of catalysis as an inverting mechanism of mannosyl residue transfer.  相似文献   

19.
糖基转移酶(glycosyltransferases,GTs)将糖基从活化的供体转移到糖、脂、蛋白质和核酸等受体,其参与的蛋白质糖基化是最重要的翻译后修饰(post-translational modifications,PTMs)之一。近年来越来越多的研究证明,糖基转移酶与致病菌毒力密切相关,在致病菌的黏附、免疫逃逸和定殖等生物学过程中发挥关键作用。目前,已鉴定的糖基转移酶根据其蛋白质三维结构特征分为3种类型GT-A、GT-B和GT-C,其中常见的是GT-A和GT-B型。在致病菌中发挥黏附功能的糖基转移酶,在结构上属于GT-B或GT-C型,对致病菌表面蛋白质(黏附蛋白、自转运蛋白等)进行糖基化修饰,在致病菌黏附、生物被膜的形成和毒力机制发挥具有重要作用。糖基转移酶不仅参与致病菌黏附这一感染初始过程,其中属于GT-A型的一类致病菌糖基转移酶会进入宿主细胞,通过糖基化宿主蛋白质影响宿主信号传导、蛋白翻译和免疫应答等生物学功能。本文就常见致病菌糖基转移酶的结构及其糖基化在致病机制中的作用进行综述,着重介绍了特异性糖基化高分子量(high-molecular-weight,HMW)黏附蛋白的糖基转移酶、针对富丝氨酸重复蛋白(serine-rich repeat proteins,SRRP)糖基化修饰的糖基转移酶、细菌自转运蛋白庚糖基转移酶(bacterial autotransporter heptosyltransferase,BAHT)家族、N-糖基化蛋白质系统和进入宿主细胞发挥毒力作用的大型梭菌细胞毒素、军团菌(Legionella)葡萄糖基转移酶以及肠杆菌科的效应子NleB。为揭示致病菌中糖基转移酶致病机制的系统性研究提供参考,为未来致病菌的诊断、药物设计研发以及疫苗开发等提供科学依据和思路。  相似文献   

20.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg(-1) protein for Kre1/EstA/Cwp2p and 72 mU mg(-1) protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg(-1) protein for Kre1/EstA/Cwp2p and 1.27 U mg(-1) protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号