首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
The presence of growth hormone (GH) and GH receptors (GHRs) in the lung suggests it is an autocrine/paracrine target site for pulmonary GH action and/or an endocrine site of pituitary GH action. Roles for GH in lung growth or pulmonary function are, however, uncertain. The possibility that pituitary and/or pulmonary GH have physiological roles in lung development has therefore been investigated in GHR knockout (KO or -/-) mice, using a proteomics approach to determine if an absence of GH-signaling affects the proteome of the developing lung. More than 600 proteins were detected by 2-DE in the lungs of control [GHR (+/+)] and GHR (-/-) mice at the end of the alveolarization period (at day 14 postnatally). Of these, 39 differed significantly in protein content at the p>0.05 level [6 were of higher abundance in the GHR (-/-) group, 33 were of lower abundance] and 17 differed at the p>0.02 level [5 of higher abundance in the GHR (-/-) group, 12 of lower abundance] and 7 were definitively identified by MS. Vimentin, a protein involved in cellular proliferation, was reduced in content by approximately 75% in the lungs of the GHR (-/-) mice. Three proteins involved in oxidative protection [SH3 domain-binding glutamic acid-rich-like protein, peroxiredoxin 6 (Prdx6), and isocitrate dehydrogenase 1] were also of lower content in the GHR (-/-) lungs (by approximately 88%, 81% and 70%, respectively). Prdx6 is also involved in lipid and surfactant metabolism, as is apolipoprotein A-IV, the lung content of which was reduced by approximately 73% in these mice. Proteasome 26S ATPase subunit 4, a protein involved in the non-lysosomal degradation of intracellular proteins, and electron flavoprotein alpha subunit , involved in intracellular metabolism, were also reduced in content in the lungs of the GHR (-/-) mice (by approximately 70% and 49%, respectively). These results therefore suggest that these proteins are normally dependent upon GH signaling, and that GH is normally involved in early lung growth, oxidative protection, lipid and energy metabolism and in proteasomal activity. These roles may reflect endocrine actions of pituitary GH and/or local autocrine/paracrine actions of GH produced within the lung.  相似文献   

4.
5.
The precise effects of growth hormone (GH) and insulin-like growth factor I (IGF-I) on muscle development and physiology are relatively unknown. Furthermore, there have been conflicting reports on the effects of GH/IGF-I on muscle. Distinguishing the direct effects of GH versus those of IGF-I is problematic, but animal models with altered GH/IGF-I action could help to alleviate some of the conflicting results and help to determine the independent actions of GH and IGF-I. The phenotypes of several mouse models, namely the GH receptor-gene-disrupted (GHR -/-) mouse and a variety of IGF-I -/- mice, are summarized, which ultimately will aid our understanding of this complex area.  相似文献   

6.
The possible presence and action of growth hormone (GH) in the neural retina was investigated in newborn mice. The neural retina was found to be a site of GH gene expression, as GH mRNA was abundant in cells of the retinal ganglion cell layer, in which GH was also detected. It was also a site of GH action, since GH receptor (GHR) immunoreactivity mirrored that of GH. Actions of GH within the eye were indicated by a reduction in its axial length and retinal width (its neuroblastic, inner plexiform, and optic fiber layers) in GHR gene disrupted mice (GHR-/-), in comparison with wild type (GHR+/+) littermates. In the absence of GH signaling, four proteins in the retinal proteome of the GHR-/- mice (identified by 2-D gels and MS) differed in abundance with those in the wild type mice. Brain abundant membrane attached signal protein-1 (BASP-1) was down-regulated, whereas protein kinase C inhibitor 1, cyclophilin A, KH domain-containing, RNA-binding, signal transduction-associated protein 3 were up-regulated in GHR-/- mice. These proteins are involved in retinal vascularization, neural proliferation and neurite outgrowth. GH might thus have hitherto unsuspected roles in these processes during retinal development.  相似文献   

7.
Growth hormone receptor (GHR), the cognate receptor of growth hormone (GH), is a membrane bound receptor that belongs to the class I cytokine receptor superfamily. GH binding GHR induces cell differentiation and maturation, initiates the anabolism inside the cells and promotes cell proliferation. Recently, GHR has been reported to be associated with various types of cancer. However, the underlying mechanism of GHR in gastric cancer has not been defined. Our results showed that silence of GHR inhibited the growth of SGC-7901 and MGC-803 cells, and tumour development in mouse xenograft model. Flow cytometry showed that GHR knockout significantly stimulated gastric cancer cell apoptosis and caused G1 cell cycle arrest, which was also verified by Western blot that GHR deficiency induced the protein level of cleaved-PARP, a valuable marker of apoptosis. In addition, GHR deficiency inhibited the activation of PI3K/AKT signalling pathway. On the basis of the results, that GHR regulates gastric cancer cell growth and apoptosis through controlling G1 cell cycle progression via mediating PI3K/AKT signalling pathway. These findings provide a novel understanding for the role of GHR in gastric cancer.  相似文献   

8.
Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world''s longest‐lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature‐adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF‐1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.  相似文献   

9.
Growth hormone (GH) regulates body growth and metabolism. GH exerts its biological action by stimulating JAK2, a GH receptor (GHR)-associated tyrosine kinase. Activated JAK2 phosphorylates itself and GHR, thus initiating multiple signaling pathways. In this work, we demonstrate that platelet-derived growth factor (PDGF) and lysophosphatidic acid (LPA) down-regulate GH signaling via a protein kinase C (PKC)-dependent pathway. PDGF substantially reduces tyrosyl phosphorylation of JAK2 induced by GH but not interferon-gamma or leukemia inhibitory factor. PDGF, but not epidermal growth factor, decreases tyrosyl phosphorylation of GHR (by approximately 90%) and the amount of both total cellular GHR (by approximately 80%) and GH binding (by approximately 70%). The inhibitory effect of PDGF on GH-induced tyrosyl phosphorylation of JAK2 and GHR is abolished by depletion of 4beta-phorbol 12-myristate 13-acetate (PMA)-sensitive PKCs with chronic PMA treatment and is severely inhibited by GF109203X, an inhibitor of PKCs. In contrast, extracellular signal-regulated kinases 1 and 2 and phosphatidylinositol 3-kinase appear not to be involved in this inhibitory effect of PDGF. LPA, a known activator of PKC, also inhibits GH-induced tyrosyl phosphorylation of JAK2 and GHR and reduces the number of GHR. We propose that ligands that activate PKC, including PDGF, LPA, and PMA, down-regulate GH signaling by decreasing the number of cell surface GHR through promoting GHR internalization and degradation and/or cleavage of membrane GHR and release of the extracellular domain of GHR.  相似文献   

10.
We have investigated trafficking of two negative regulators of growth hormone receptor (GHR) signaling: a human, truncated receptor, GHR1-279, and a GH antagonist, B2036. Fluorescent-labeled growth hormone (GH) was rapidly internalized by the full-length GHR, with >80% of the hormone internalized within 5 min of exposure to GH. In contrast, <5% of labeled GH was internalized by cells expressing truncated GHR1-279. Using another truncated receptor, GHR1-317 fused to enhanced green fluorescent protein (EGFP), we have exploited fluorescence energy transfer to monitor the trafficking of ligand-receptor complexes. The data confirmed that internalization of this truncated receptor is very inefficient. It was possible to visualize the truncated GHR1-317-EGFP packaged in the endoplasmic reticulum, its rapid movement in membrane bound vesicles to the Golgi apparatus, and subsequent transport to the cell membrane. The GH antagonist, B2036, blocked Jak2-Stat5-mediated GHR signaling but was internalized with a similar time course to native GH. The results: 1) demonstrate the rapid internalization of GH when studied under physiological conditions; 2) confirm the hypothesis that internalization of cytoplasmic domain truncated human GHRs is very inefficient, which explains their dominant negative action; and 3) show that the antagonist action of B2036 is independent of receptor internalization.  相似文献   

11.
Most biological actions of growth hormone (GH) are mediated by the insulin-like growth factor I (IGF-I) that is produced after the interaction of the hormone with a specific cell surface receptor, the GH receptor (GHR). Even though the GH excess on fish metabolism is poorly known, several species have been genetically engineered for this hormone in order to improve growth for aquaculture. In some GH-transgenic fish growth has been dramatically increased, while in others high levels of transgene expression have shown inhibition of the growth response. In this study, we used for the first time different genotypes (hemizygous and homozygous) of a GH-transgenic zebrafish (Danio rerio) lineage as a model for studying the GH resistance induced by different GH transgene expression levels. The results obtained here demonstrated that homozygous fish did not grow as expected and have a lower condition factor, which implies a catabolic state. These findings are explained by a decreased IGF-I and GHR gene expression as a consequence of GH resistance. Together, our results demonstrated that homozygous GH-transgenic fish showed similar characteristics to the starvation-induced fish and could be an interesting model for studying the regulation of the GH/GHR/IGF-I axis in fish.  相似文献   

12.
Melanoma is the most aggressive skin cancer. Its aggressiveness is most commonly attributed to ERK pathway mutations leading to constitutive signaling. Though initial tumor regression results from targeting this pathway, resistance often emerges. Interestingly, interrogation of the NCI-60 database indicates high growth hormone receptor (GHR) expression in melanoma cell lines. To further characterize melanoma, we tested responsiveness to human growth hormone (GH). GH treatment resulted in GHR signaling and increased invasion and migration, which was inhibited by a GHR monoclonal antibody (mAb) antagonist in WM35, SK-MEL 5, SK-MEL 28 and SK-MEL 119 cell lines. We also detected GH in the conditioned medium (CM) of human melanoma cell lines. GHR, JAK2 and STAT5 were basally phosphorylated in these cell lines, consistent with autocrine/paracrine GH production. Together, our results suggest that melanomas are enriched in GHR and produce GH that acts in an autocrine/paracrine manner. We suggest that GHR may constitute a therapeutic target in melanoma.  相似文献   

13.
14.
GH and IGF-I are critical regulators of growth and metabolism. GH interacts with the GH receptor (GHR), a cytokine superfamily receptor, to activate the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), and initiate intracellular signaling cascades. IGF-I, produced in part in response to GH, binds to the heterotetrameric IGF-I receptor (IGF-IR), which is an intrinsic tyrosine kinase growth factor receptor that triggers proliferation, antiapoptosis, and other biological actions. Previous in vitro and overexpression studies have suggested that JAKs may interact with IGF-IR and that IGF-I stimulation may activate JAKs. In this study, we explore interactions between GHR-JAK2 and IGF-IR signaling pathway elements utilizing the GH and IGF-I-responsive 3T3-F442A and 3T3-L1 preadipocyte cell lines, which endogenously express both the GHR and IGF-IR. We find that GH induces formation of a complex that includes GHR, JAK2, and IGF-IR in these preadipocytes. The assembly of this complex in intact cells is rapid, GH concentration dependent, and can be prevented by a GH antagonist, G120K. However, it is not inhibited by the kinase inhibitor, staurosporine, which markedly inhibits GHR tyrosine phosphorylation. Moreover, complex formation does not appear dependent on GH-induced activation of the ERK or phosphatidylinositol 3-kinase signaling pathways or on the tyrosine phosphorylation of GHR, JAK2, or IGF-IR. These results suggest that GH-induced formation of the GHR-JAK2-IGF-IR complex is governed instead by GH-dependent conformational change(s) in the GHR and/or JAK2. We further demonstrate that GH and IGF-I can synergize in acute aspects of signaling and that IGF-I enhances GH-induced assembly of conformationally active GHRs. These findings suggest the existence of previously unappreciated relationships between these two hormones.  相似文献   

15.
16.
Growth hormone (GH), acting through its receptor (GHR), is essential for somatic growth and development and maintaining metabolic homeostasis. GHR gene-deficient (GHR(-/-)) mice exhibit drastically diminished insulin-like growth factor-I (IGF-I) levels, proportional growth retardation, elevated insulin sensitivity, and reduced islet beta-cell mass. Unlike the liver, which is mostly unaffected by changes in IGF-I level, skeletal muscles express high levels of IGF-I receptor (IGF-IR). The net result of a concurrent deficiency in the actions of both GH and IGF-I, which exert opposite influences on insulin responsiveness, has not been evaluated. We studied insulin-stimulated early responses in the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and p85 subunit of phosphatidylinositol 3-kinase. Upon in vivo insulin stimulation, skeletal muscles of GHR(-/-) mice exhibit transient delayed responses in IR and IRS-1 phosphorylation but normal levels of p85 association with IRS-1. This is in contrast to normal/elevated insulin responses in hepatocytes and indicates tissue-specific effects of GHR gene deficiency. In addition to stimulating normal islet cell growth, GH may participate in islet cell overgrowth, which compensates for insulin resistance induced by obesity. To determine whether the islet cell overgrowth is dependent on GH signaling, we studied the response of male GHR(-/-) mice to high-fat diet (HFD)-induced obesity. After 17 wk on a HFD, GHR(-/-) mice became more significantly obese than wild-type mice and exhibited increased beta-cell mass to a slightly higher extent. These data demonstrate that GH signaling is not required for compensatory islet growth. Thus, in both muscle insulin responsiveness and islet growth compensation, normal levels of GH signals do not seem to play a dominant role.  相似文献   

17.
In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3–GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors.  相似文献   

18.
19.
20.
Two truncated isoforms of growth hormone (GH) receptor (GHR) were identified in mice and in humans. The proteins encoded by these isoforms lack most of the intracellular domain of the GHR and inhibit GH action in a dominant negative fashion. We have quantified the mRNAs encoding the GHR isoforms in mouse tissues by use of real-time RT-PCR and examined the effect of GH excess or deficiency on regulation of mRNA levels of the GHR isoforms in vivo. In the liver, the truncated GHR mRNAs (mGHR-282 and mGHR-280) were 0.5 and <0.1%, respectively, the level of full-length GHR (mGHR-fl). In skeletal muscle, the values were 2-3 and 0.1-0.5% of mGHR-fl, respectively, and in subcutaneous fat, the values were 3-5 and 0.1-0.5% of mGHR-fl, respectively. The bovine GH transgenic mice showed a significant increase of mGHR-fl in liver but a significant decrease in skeletal muscle, with no difference in subcutaneous fat when compared with control mice. The lit/lit mice showed a significant decrease of mGHR-fl in liver, no difference of mGHR-fl in muscle, and a significant increase of mGHR-fl in subcutaneous fat when compared with lit/+ mice. The mRNA of mGHR-282 was regulated in parallel with mGHR-fl in all tissues of all mice examined, whereas that of mGHR-280 was not changed in either GH-excess or GH-deficient states. In conclusion, two truncated isoforms of GHR mRNAs were detected in liver, skeletal muscle, and subcutaneous fat of mice. The ratio of GHR-tr to GHR-fl mRNA was tissue specific and not affected by chronic excess or deficiency of GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号