首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Pseudohypoparathyroidism-Ia and -Ib (PHP-Ia and -Ib) are caused by mutations in GNAS exons 1-13 and methylation defects in the imprinted GNAS cluster, respectively. PHP-Ia patients show Albright hereditary osteodystrophy (AHO), together with resistance to the action of different hormones that activate the Gs-coupled pathway. In PHP-Ib patients AHO is classically absent and hormone resistance is limited to PTH and TSH. This disorder is caused by GNAS methylation alterations with loss of imprinting at the exon A/B differentially methylated region (DMR) being the most consistent and recurrent defect. The familial form of the disease (AD-PHP-Ib) is typically associated with an isolated loss of imprinting at the exon A/B DMR due to microdeletions disrupting the upstream STX16 gene. In addition, deletions removing the entire NESP55 DMR, located within GNAS, associated with loss of all the maternal GNAS imprints have been identified in some AD-PHP-Ib kindreds. Conversely, most sporadic PHP-Ib cases have GNAS imprinting abnormalities that involve multiple DMRs, but the genetic lesion underlying these defects is unknown. Recently, methylation defects have been detected in a subset of patients with PHP-Ia and variable degrees of AHO, indicating a molecular overlap between the 2 forms. Imprinting defects do not seem to be associated with the severity of AHO neither with specific AHO signs. In conclusion, the latest findings on the molecular basis underlying these defects suggest the existence of a clinical and genetic/epigenetic overlap between PHP-Ia and PHP-Ib, and highlight the necessity of a new clinical classification of these disorders based on molecular findings.  相似文献   

6.
Albright's hereditary osteodystrophy (AHO) is a rare inherited disease characterized by skeletal abnormalities, short stature, and, in some cases, resistance to parathyroid hormone, resulting in pseudohypoparathyroidism (PHP). Heterozygous inactivating mutations of the GNAS1 gene are responsible for reduced activity of the alpha subunit of the Gs protein (G(Salpha)), a protein that mediates hormone signal transduction across cell membranes. G(salpha) is also known to have oncogenic potentials, leading to the development of human pituitary tumors and Leydig cell tumors. Here, we report the 1st case, a 3.5-year-old girl, with classic AHO phenotype and PHP type 1A associated with a cerebellar pilocytic astrocytoma. Coincidence or genetic relationships of both diseases are discussed according to molecular findings and current literature.  相似文献   

7.
Albright hereditary osteodystrophy (AHO) is characterized by short stature, brachydactyly, and often heterotopic ossifications that are typically subcutaneous. Subcutaneous ossifications (SCO) cause considerable morbidity in AHO with no effective treatment. AHO is caused by heterozygous inactivating mutations in those GNAS exons encoding the α-subunit of the stimulatory G protein (Gα(s)). When inherited maternally, these mutations are associated with obesity, cognitive impairment, and resistance to certain hormones that mediate their actions through G protein-coupled receptors, a condition termed pseudohypoparathyroidism type 1a (PHP1a). When inherited paternally, GNAS mutations cause only AHO but not hormonal resistance, termed pseudopseudohypoparathyroidism (PPHP). Mice with targeted disruption of exon 1 of Gnas (Gnas(E1-/+)) replicate human PHP1a or PPHP phenotypically and hormonally. However, SCO have not yet been reported in Gnas(E1+/-) mice, at least not those that had been analyzed by us up to 3 months of age. Here we now show that Gnas(E1-/+) animals develop SCO over time. The ossified lesions increase in number and size and are uniformly detected in adult mice by one year of age. They are located in both the dermis, often in perifollicular areas, and the subcutis. These lesions are particularly prominent in skin prone to injury or pressure. The SCO comprise mature bone with evidence of mineral deposition and bone marrow elements. Superficial localization was confirmed by radiographic and computerized tomographic imaging. In situ hybridization of SCO lesions were positive for both osteonectin and osteopontin. Notably, the ossifications were much more extensive in males than females. Because Gnas(E1-/+) mice develop SCO features that are similar to those observed in AHO patients, these animals provide a model system suitable for investigating pathogenic mechanisms involved in SCO formation and for developing novel therapeutics for heterotopic bone formation. Moreover, these mice provide a model with which to investigate the regulatory mechanisms of bone formation.  相似文献   

8.
G(s) is a heterotrimeric (alpha, beta, and gamma chains) G protein that couples heptahelical plasma membrane receptors to stimulation of adenylyl cyclase. Inactivation of one GNAS1 gene allele encoding the alpha chain of G(s) (G alpha(s)) causes pseudohypoparathyroidism type Ia. Affected subjects have resistance to parathyroid hormone (PTH) and other hormones that activate adenylyl cyclase plus somatic features termed Albright hereditary osteodystrophy. By contrast, subjects with pseudohypoparathyroidism type Ib have hormone resistance that is limited to PTH and lack Albright hereditary osteodystrophy. The molecular basis for pseudohypoparathyroidism type Ib is unknown. We analyzed the GNAS1 gene for mutations using polymerase chain reaction to amplify genomic DNA from three brothers with pseudohypoparathyroidism type Ib. We identified a novel heterozygous 3-base pair deletion causing loss of isoleucine 382 in the three affected boys and their clinically unaffected mother and maternal grandfather. This mutation was absent in other family members and 15 additional unrelated subjects with pseudohypoparathyroidism type Ib. To characterize the signaling properties of the mutant G alpha(s), we used site-directed mutagenesis to introduce the isoleucine 382 deletion into a wild type G alpha(s) cDNA, transfected HEK293 cells with either wild type or mutant G alpha(s) cDNA, plus cDNAs encoding heptahelical receptors for PTH, thyrotropic hormone, or luteinizing hormone, and we measured cAMP production in response to hormone stimulation. The mutant G alpha(s) protein was unable to interact with the receptor for PTH but showed normal coupling to the other coexpressed heptahelical receptors. These results provide evidence of selective uncoupling of the mutant G alpha(s) from PTH receptors and explain PTH-specific hormone resistance in these three brothers with pseudohypoparathyroidism type Ib. The absence of PTH resistance in the mother and maternal grandfather who carry the same mutation is consistent with current models of paternal imprinting of the GNAS1 gene.  相似文献   

9.
Pseudohypoparathyroidism (PHP) is a rare inherited syndrome frequently associated with Albright's hereditary osteodystrophy (AHO). We conducted a multicenter study including 71 PHP children and 77 relatives. Erythrocyte Gsalpha biological activity was measured in each patient (normal range 85-110%). 61 patients were classified into four subtypes based on clinical and endocrine data and Gsalpha activity: 45 PHP Ia, 8 PHP Ib, 2 PHP II, and 6 PHP Ic. PHP Ia had decreased Gsalpha (58 +/- 9%), PHP Ib patients had PTH resistance, no AHO and normal Gsalpha (96 +/- 9%), PHP Ic patients had PTH resistance, AHO and no decreased Gsalpha (97 +/- 13%). The 10 remaining patients were considered to have pseudo-pseudohypoparathyroid (Pseudo-PHP) and were divided into two subtypes. One subtype had decreased Gsalpha and the second subtype had normal Gsalpha activity. The heterogeneous expression of Pseudo-PHP and thyrotropin resistance, which preceded parathyroid hormone resistance in 24% of the children, suggested that PHP might be a gradually evolving disease. GRF resistance was found in 4 out of 9 children investigated. The pedigree analysis showed PHP Ia had a dominant mode of inheritance with increased severity through generations. Pedigree analysis did not support a genomic imprinting hypothesis. Two children out of 9 had a chromosome 2 abnormality. This study confirms that Gsalpha activity is a significant marker in the diagnosis and classification of PHP.  相似文献   

10.
The term pseudohypoparathyroidism (PHP) describes a heterogeneous group of related disorders characterized by end-organ resistance to parathyroid hormone (PTH). PHP is caused by deficiency of the α-subunit of stimulatory G proteins (Gsα), which is crucial for signal transduction of more than 1000 G protein-coupled receptors into the cell. PHP type Ia is caused by heterozygous, maternally inherited inactivating mutations involving those exons of the GNAS locus that encode Gsα. In addition, PHP Ia and Ic patients present with features of Albright hereditary osteodystrophy (AHO), which includes round face, short stature, brachymetacarpia, ectopic ossification, and mental retardation. Paternally inherited GNAS mutations lead to pseudo-PHP and are characterized by only some features of AHO in the absence of hormone resistance. PHP type Ib is caused by heterozygous, maternally inherited deletions up-stream of or within the GNAS locus that are associated with the loss of methylation at one or more maternally methylated regions within GNAS . Typically, these patients lack AHO features. This article provides an overview of the role of epigenetic factors for different PHP subtypes.  相似文献   

11.
《Endocrine practice》2014,20(10):e202-e206
ObjectiveWe report an atypical association of primary adrenal insufficiency and pseudohypoparathyroidism (PHP) and a novel GNAS1 gene mutation in a Caucasian female who initially presented with adrenal crisis.MethodsA case report and literature review.ResultsA 37-year-old female presented with shock at 11 years of age, and investigations revealed primary adrenal insufficiency and pseudohypoparathyroidism (PHP). She had typical features of Albright hereditary osteodystrophy (AHO) and evidence of thyroid-stimulating hormone (TSH), growth-hormone-releasing hormone (GHRH), and gonadotrophin resistance fitting with the diagnosis of PHP type 1a/1c. She did not have a family history of any autoimmune disease or PHP. Her mother was phenotypically normal. Genomic DNA sequencing of those GNAS exons and adjacent intronic regions that encode the stimulatory guanine nucleotide-binding protein Gsαrevealed a novel heterozygous mutation in exon 11, c.857-858delCT.ConclusionThe association of primary adrenal insufficiency and PHP has not been reported in literature and may prove an area for further research. The novel mutation in this case adds to the spectrum of mutations associated with these disorders. (Endocr Pract. 2014;20:e202-e206)  相似文献   

12.
13.
14.
G proteins couple receptors for many hormones to effectors that regulate second messenger metabolism. Several endocrine disorders have been shown to be caused by either loss- or gain-of-function mutations in G proteins or G protein-coupled receptors. In pseudohypoparathyroidism type Ia (PHP Ia), there are generalized hormone resistance (parathyroid hormone [PTH], thyroid-stimulating hormone, gonadotropins) and associated abnormal physical features, Albright hereditary osteodystrophy. Subjects with PHP Ib are normal in appearance and show renal resistance to PTH. In McCune-Albright syndrome (MAS), subjects show autonomous endocrine hyperfunction associated with fibrous dysplasia of bone and skin hyperpigmentation. Germline loss-of-function mutations have been identified in the G(s)-alpha gene in PHP Ia, and recent evidence suggests that the G(s)-alpha gene is paternally imprinted in a tissue-specific manner. Abnormal imprinting of the G(s)-alpha gene may be the cause of PHP Ib. MAS, in contrast, is caused by gain-of-function missense mutations of the G(s)-alpha gene.  相似文献   

15.
Heterozygous inactivating mutations in the GNAS1 exons (20q13.3) that encode the alpha-subunit of the stimulatory G protein (Gsalpha) are found in patients with pseudohypoparathyroidism type Ia (PHP-Ia) and in patients with pseudo-pseudohypoparathyroidism (pPHP). However, because of paternal imprinting, resistance to parathyroid hormone (PTH)-and, sometimes, to other hormones that require Gsalpha signaling-develops only if the defect is inherited from a female carrier of the disease gene. An identical mode of inheritance is observed in kindreds with pseudohypoparathyroidism type Ib (PHP-Ib), which is most likely caused by mutations in regulatory regions of the maternal GNAS1 gene that are predicted to interfere with the parent-specific methylation of this gene. We report a patient with PTH-resistant hypocalcemia and hyperphosphatemia but without evidence for Albright hereditary osteodystrophy who has paternal uniparental isodisomy of chromosome 20q and lacks the maternal-specific methylation pattern within GNAS1. Since studies in the patient's fibroblasts did not reveal any evidence of impaired Gsalpha protein or activity, it appears that the loss of the maternal GNAS1 gene and the resulting epigenetic changes alone can lead to PTH resistance in the proximal renal tubules and thus lead to impaired regulation of mineral-ion homeostasis.  相似文献   

16.
Pseudohypoparathyroidism type 1b (PHP1b) is characterized by hypocalcemia, hyperphosphatemia, increased levels of circulating parathyroid hormone (PTH), and no skeletal or developmental abnormalities. The goal of this study was to perform a full characterization of a familial case of PHP1b with neurological involvement and to identify the genetic cause of disease. The initial laboratory profile of the proband showed severe hypocalcemia, hyperphosphatemia and normal levels of PTH, which was considered to be compatible with primary hypoparathyroidism. With disease progression the patient developed cognitive disturbance, PTH levels were found to be slightly elevated and a picture of PTH resistance syndrome seemed more probable. The diagnosis of PHP1b was established after the study of family members and blunted urinary cAMP results were obtained in a PTH stimulation test. Integration of whole genome genotyping and exome sequencing data supported this diagnosis by revealing a novel homozygous missense mutation in PTH1R (p.Arg186His) completely segregating with the disease. Here, we demonstrate segregation of a novel mutation in PTH1R with a phenotype of PHP1b presenting with neurological symptoms, but no bone defects. This case represents the extreme end of the spectrum of cognitive impairment in PTH dysfunction and defines a possible novel form of PHP1b resulting from the impaired interaction between PTH and PTH1R.  相似文献   

17.
《Endocrine practice》2009,15(3):249-253
ObjectiveTo describe an infant with early excessive weight gain as the principle manifestation of pseudohypoparathyroidism (PHP) type 1a and Albright hereditary osteodystrophy (AHO).MethodsWe describe the clinical and laboratory findings in an infant with early excessive weight gain without evidence of hyperphagia and review relevant literature.ResultsThe proband’s birth weight was 4047 g (1.4 SD). She was breastfed from birth. Excessive weight gain was noted by 1 month of age. At 3 months of age, hard subcutaneous nodules were observed, and histologic analysis of a biopsied lesion suggested a possible diagnosis of ossified pilomatricoma. At 6 months of age, she was documented to have mild hypothyroidism. Abnormal weight gain continued despite a caloric intake of about 65 kcal/kg per day. At 11 months of age, 2 new subcutaneous hard nodules were identified, which in the context of excessive weight gain and evolving mild primary hypothyroidism, suggested a unifying diagnosis of PHP type 1a and AHO. GNAS sequence analysis was performed, which revealed a 4-base deletion (Nt565delGACT) in exon 8.ConclusionsAs more monogenic causes of severe early obesity are described, it is important to consider PHP type 1a in the differential diagnosis. Lack of short stature, skeletal abnormalities, or absence of PTH resistance should not exclude this diagnosis in a young child. (Endocr Pract. 2009;15:249-253)  相似文献   

18.
Pseudohypoparathyroidism (PHP) is a rare inherited syndrome characterized by parathyroid hormone (PTH) resistance and is frequently associated with Albright's hereditary osteodystrophy and resistance to other cAMP-mediated hormones. The usual neonatal presentation is mild primary hypothyroidism secondary to resistance to thyroid-stimulating hormone; hypocalcemia usually develops after age 3-5 years. This work describes the diversity in the clinical expression and course of PHP, with emphasis on calcium levels by age and treatment, in 8 children under long-term follow-up at our pediatric tertiary center. The calcium levels at presentation ranged from transient neonatal hypocalcemia to infantile hypercalcemia to childhood/adolescence hypocalcemia. Interestingly, relative hypocalciuria at diagnosis and during therapy, in the presence of renal PTH resistance, was the rule. These findings indicate that transient neonatal hypocalcemia associated with other clinical features or a family history of PHP may be a flag for clinicians to screen for PTH resistance later in life. In addition, PTH resistance may be missed by surveying calcium levels only; thus the PTH levels have to be checked as well. In addition, the recommendation for patients with hypoparathyroidism that strict low-normal calcium levels be maintained during therapy in order to prevent hypercalciuria is probably not applicable in PHP.  相似文献   

19.
Murine models indicate that Gαs and its extra-long variant XLαs, both of which are derived from GNAS, markedly differ regarding their cellular actions, but these differences are unknown. Here we investigated activation-induced trafficking of Gαs and XLαs, using immunofluorescence microscopy, cell fractionation, and total internal reflection fluorescence microscopy. In transfected cells, XLαs remained localized to the plasma membrane, whereas Gαs redistributed to the cytosol after activation by GTPase-inhibiting mutations, cholera toxin treatment, or G protein-coupled receptor agonists (isoproterenol or parathyroid hormone (PTH)(1-34)). Cholera toxin treatment or agonist (isoproterenol or pituitary adenylate cyclase activating peptide-27) stimulation of PC12 cells expressing Gαs and XLαs endogenously led to an increased abundance of Gαs, but not XLαs, in the soluble fraction. Mutational analyses revealed two conserved cysteines and the highly charged domain as being critically involved in the plasma membrane anchoring of XLαs. The cAMP response induced by M-PTH(1-14), a parathyroid hormone analog, terminated quickly in HEK293 cells stably expressing the type 1 PTH/PTH-related peptide receptor, whereas the response remained maximal for at least 6 min in cells that co-expressed the PTH receptor and XLαs. Although isoproterenol-induced cAMP response was not prolonged by XLαs expression, a GTPase-deficient XLαs mutant found in certain tumors and patients with fibrous dysplasia of bone and McCune-Albright syndrome generated more basal cAMP accumulation in HEK293 cells and caused more severe impairment of osteoblastic differentiation of MC3T3-E1 cells than the cognate Gαs mutant (gsp oncogene). Thus, activated XLαs and Gαs traffic differently, and this may form the basis for the differences in their cellular actions.  相似文献   

20.
A 31-year-old man and a 12-year-old girl were diagnosed as pseudohypoparathyroidism (PHP) Type I because of a failure to respond to the administration of parathyroid hormone (PTH) with increased urinary excretion of phosphate and cyclic adenosine-3', 5'-monophosphate (cAMP). A 22-year-old woman was diagnosed as PHP Type II because there was no increase in the urinary excretion of phosphate despite of a marked increase in urinary cAMP excretion. With the combined calcium-PTH infusion or PTH infusion after vitamin D therapy, renal response was improved in these patients. Also dibutyryl adenosine-3'-5'-cyclic monophosphate (dbcAMP) infusion evoked an increased urinary phosphate excretion in all of the patients. The metabolic defect of our patients with PHP Type I may be caused not by a lack or defective form of PTH-sensitive receptor adenylate cyclase complex but rather by an abnormal conformation in the plasma membrane-associated receptor adenylate cyclase enzyme complex in kidney. In the patient with PHP Type II, as cAMP generation is intact, the metabolic defect might be related to a defect of calcium mobilization in renal tubular cells in response to PTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号