首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a second messenger, H2O2 generation and signal transduction is subtly controlled and involves various signal elements, among which are the members of MAP kinase family. The increasing evidences indicate that both MEK1/2 and p38-like MAP protein kinase mediate ABA-induced H2O2 signaling in plant cells. Here we analyze the mechanisms of similarity and difference between MEK1/2 and p38-like MAP protein kinase in mediating ABA-induced H2O2 generation, inhibition of inward K+ currents, and stomatal closure. These data suggest that activation of MEK1/2 is prior to p38-like protein kinase in Vicia guard cells.Key words: H2O2 signaling, ABA, p38-like MAP kinase, MEK1/2, guard cellAn increasing number of literatures elucidate that reactive oxygen species (ROS), especially H2O2, is essential to plant growth and development in response to stresses,14 and involves activation of various signaling events, among which are the MAP kinase cascades.13,5 Typically, activation of MEK1/2 mediates NADPH oxidase-dependent ROS generation in response to stresses,4,68 and the facts that MEK1/2 inhibits the expression and activation of antioxidant enzymes reveal how PD98059, the specific inhibitor of MEK1/2, abolishes abscisic acid (ABA)-induced H2O2 generation.6,8,9 It has been indicated that PD98059 does not to intervene on salicylic acid (SA)-stimulated H2O2 signaling regardless of SA mimicking ABA in regulating stomatal closure.2,6,8,10 Generally, activation of MEK1/2 promotes ABA-induced stomatal closure by elevating H2O2 generation in conjunction with inactivating anti-oxidases.Moreover, activation of plant p38-like protein kinase, the putative counterpart of yeast or mammalian p38 MAP kinase, has been reported to participate in various stress responses and ROS signaling. It has been well documented that p38 MAP kinase is involved in stress-triggered ROS signaling in yeast or mammalian cells.1113 Similar to those of yeast and mammals, many studies showed the activation of p38-like protein kinase in response to stresses in various plants, including Arabidopsis thaliana,1416 Pisum sativum,17 Medicago sativa18 and tobacco.19 The specific p38 kinase inhibitor SB203580 was found to modulate physiological processes in plant tissues or cells, such as wheat root cells,20 tobacco tissue21 and suspension-cultured Oryza sativa cells.22 Recently, we investigate how activation of p38-like MAP kinase is involved in ABA-induced H2O2 signaling in guard cells. Our results show that SB203580 blocks ABA-induced stomatal closure by inhibiting ABA-induced H2O2 generation and decreasing K+ influx across the plasma membrane of Vicia guard cells, contrasting greatly with its analog SB202474, which has no effect on these events.23,24 This suggests that ABA integrate activation of p38-like MAP kinase and H2O2 signaling to regulate stomatal behavior. In conjunction with SB203580 mimicking PD98059 not to mediate SA-induced H2O2 signaling,23,24 these results generally reveal that the activation of p38-like MAP kinase and MEK1/2 is similar in guard cells.On the other hand, activation of p38-like MAP kinase23,24 is not always identical to that of MEK1/28,25 in ABA-induced H2O2 signaling of Vicia guard cells. For example, H2O2- and ABA-induced stomatal closure was partially reversed by SB203580. The maximum inhibition of both regent-induced stomatal closure were observed at 2 h after treatment with SB203580, under which conditions the stomatal apertures were 89% and 70% of the control values, respectively. By contrast, when PD98059 was applied together with ABA or H2O2, the effects of both ABA- and H2O2-induced stomatal closure were completely abolished (Fig. 1). These data imply that the two members of MAP kinase family are efficient in H2O2-stimulated stomatal closure, but p38-like MAP kinase is less susceptive than MEK1/2 to ABA stimuli.Open in a separate windowFigure 1Effects of SB203580 and PD98059 on ABA- and H2O2-induced stomatal closure. The experimental procedure and data analysis are according to the previous publication.8,23,24It has been reported that ABA or NaCl activate p38 MAP kinase in the chloronema cells of the moss Funaria hygrometrica in 2∼10 min.26 Similar to this, SB203580 improves H2O2-inhibited inward K+ currents after 4 min and leads it to the control level (100%) during the following 8 min (Fig. 2). However, the activation of p38-like MAP kinase in response to ABA need more time, and only recovered to 75% of the control at 8 min of treatment (Fig. 2). These results suggest that control of H2O2 signaling is required for the various protein kinases including p38-like MAP kinase and MEK1/2 in guard cells,1,2,8,23,24 and the ABA and H2O2 pathways diverge further downstream in their actions on the K+ channels and, thus, on stomatal control. Other differences in action between ABA and H2O2 are known. For example, Köhler et al. (2001) reported that H2O2 inhibited the K+ outward rectifier in guard cells shows that H2O2 does not mimic ABA action on guard cell ion channels as it acts on the K+ outward rectifier in a manner entirely contrary to that of ABA.27Open in a separate windowFigure 2Effect of SB203580 on ABA- and H2O2-inhibited inward K+ currents. The experimental procedure and data analysis are according to the previous publication.24 SB203580 directs ABA- and H2O2-inactivated inward K+ currents across plasma membrane of Vicia guard cells. Here the inward K+ currents value is stimulated by −190 mV voltage.Based on the similarity and difference between PD98059 and SB203580 in interceding ABA and H2O2 signaling, we speculate the possible mechanism is that the member of MAP kinase family specially regulate signal event in ABA-triggered ROS signaling network,14 and the signaling model as follows (Fig. 3).Open in a separate windowFigure 3Schematic illustration of MAP kinase-mediated H2O2 signaling of guard cells. The arrows indicate activation. The line indicates enhancement and the bar denotes inhibition.  相似文献   

2.
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.  相似文献   

3.
4.
Xu Z  Wang BR  Wang X  Kuang F  Duan XL  Jiao XY  Ju G 《Life sciences》2006,79(20):1895-1905
The enhanced production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of neuronal apoptosis after acute traumatic spinal cord injury (SCI). In the present study, to further characterize the pathways mediating the synthesis and release of NO, we examined activation of extracellular signal regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) in microglia/macrophages in the injured area of adult rats subjected to a complete transection at the T10 vertebrae level and assessed their role in NO production and survival of neurons by using immunohistochemistry, Western blot, RT-PCR and pharmacological interventions. Results showed activation of microglia/macrophages featured by morphological changes, as visualized immunohistochemically with the marker OX-42, in the areas adjacent to the lesion epicenter 1 h after surgery. Concomitantly, iNOS mRNA and its protein in the activated microglia/macrophages were also significantly upregulated at early hours after surgery. Their levels were maximal at 6 h, persisted for at least 24 h, and returned to basal level 72 h after SCI. Furthermore, phosphorylated ERK1/2 and p38 MAPK were activated as well in microglia/macrophages in injured area with a similar time course as iNOS. With administration of L-NAME, a NOS inhibitor, the number of apoptotic neurons was clearly decreased, as assessed with TUNEL method at 24 h after SCI. In parallel, loss of neurons induced by SCI, assessed with NeuN immunohistochemistry, was also diminished. Moreover, the effect of inhibition of phosphorylation ERK1/2 and p38 MAPK by corresponding inhibitors PD98059 and SB203580 administered before and after SCI was also investigated. Inhibition of p38 effectively reduced iNOS mRNA expression and rescued neurons from apoptosis and death in the area adjacent to the lesion epicenter; whereas the inhibition of ERK1/2 had a smaller effect on decrease of iNOS mRNA and no long-term protective effect on cell loss. These results indicate the ERK1/2 and p38 MAPK signaling pathway, especially the latter, play an important role in NO-mediated degeneration of neuron in the spinal cord following SCI. Strategies directed to blocking the initiation of this cascade prove to be beneficial for the treatment of acute SCI.  相似文献   

5.
The neurotrophin receptor p75NTR provides protection from oxidant stress induced by 6-hydroxydopamine (6-OHDA) and resultant cell death. In the absence of p75NTR, TrkA is upregulated and its signaling pathway effectors are increasingly activated. Necdin, a MAGE protein and known interactor of p75NTR and TrkA, is a potential mediator of this phenomenon. Decreased expression of necdin protein in p75NTR-deficient PC12 cells decreased TrkA expression and increased PC12 cell resistance to 6-OHDA. Inhibition of JNK phosphorylation by SP600125 also resulted in increased resistance to 6-OHDA, suggesting that TrkA signaling underlies the susceptibility of these cells to oxidant stress.  相似文献   

6.
The Raf family of serine/threonine protein kinases is intimately involved in the transmission of cell regulatory signals controlling proliferation and differentiation. The best characterized Raf substrates are MEK1 and MEK2. The activation of MEK1/2 by Raf is required to mediate many of the cellular responses to Raf activation, suggesting that MEK1/2 are the dominant Raf effector proteins. However, accumulating evidence suggests that there are additional Raf substrates and that subsets of Raf-induced regulatory events are mediated independently of Raf activation of MEK1/2. To examine the possibility that there is bifurcation at the level of Raf in activation of MEK1/2-dependent and MEK1/2-independent cell regulatory events, we engineered a kinase-active Raf1 variant (RafBXB(T481A)) with an amino acid substitution that disrupts MEK1 binding. We find that disruption of MEK1/2 association uncouples Raf from activation of ERK1/2, induction of serum-response element-dependent gene expression, and induction of growth and morphological transformation. However, activation of NF-kappaB-dependent gene expression and induction of neurite differentiation were unimpaired. In addition, Raf-dependent activation of p90 ribosomal S6 kinase was only slightly impaired. These results support the hypothesis that Raf kinases utilize multiple downstream effectors to regulate distinct cellular activities.  相似文献   

7.
We recently reported that p38 MAPK regulates TNF-induced endothelial apoptosis via phosphorylation and downregulation of Bcl-xL. Here, we describe that such apoptosis includes p38 MAPK-mediated, protein phosphatase 2A (PP2A)-dependent, downregulation of the MEK-ERK pathway. Inhibition of PP2A with fostriecin or calyculin A significantly increased MEK phosphorylation, as did exposure to the p38 MAPK inhibitor SB203580. Inhibition of MEK potentiated TNF-induced caspase-3 activity and cell death, and both those events were suppressed by treatment with fostriecin or calyculin A. Immunoprecipitation experiments revealed an association between p38 MAPK, PP2A and MEK, and the results of a phosphatase assay suggested that PP2A is a downstream target of p38 MAPK. Importantly, phosphorylation of Bad at Ser-112 was found to be regulated by p38 MAPK and PP2A. In summary, the present findings indicate a novel p38 MAPK-mediated apoptosis pathway, involving activation of Bad via PP2A-dependent inhibition of the MEK-ERK pathway.  相似文献   

8.
We have examined the mechanisms regulatingprostacyclin (PGI2) synthesis after acute exposure of humanumbilical vein endothelial cells (HUVEC) to interleukin-1 (IL-1).IL-1 evoked an early (30 min) release of PGI2 and[3H]arachidonate that was blocked by the cytosolicphospholipase A2 (cPLA2) inhibitorarachidonyl trifluoromethyl ketone. IL-1-mediated activationof extracellular signal-regulated kinase 1/2 (ERK1/2; p42/p44mapk) coincided temporally with phosphorylation ofcPLA2 and with the onset of PGI2synthesis. The mitogen-activated protein kinase (MAPK) kinase (MEK)inhibitors, PD-98059 and U-0126, blocked IL-1-induced ERKactivation and partially attenuated cPLA2phosphorylation and PGI2 release, suggesting thatERK-dependent and -independent pathways regulate cPLA2phosphorylation. SB-203580 treatment enhanced IL-1-induced MEK,p42/44mapk, and cPLA2 phosphorylation butreduced thrombin-stimulated MEK and p42/44mapk activation.IL-1, but not thrombin, activated Raf-1 as assessed byimmune-complex kinase assay, as did SB-203580 alone. These results showthat IL-1 causes an acute upregulation of PGI2generation in HUVEC, establish a role for theMEK/ERK/cPLA2 pathway in this early release, and provideevidence for an agonist-specific cross talk between p38mapkand p42/44mapk that may reflect receptor-specificdifferences in the signaling elements proximal to MAPK activation.

  相似文献   

9.
Renal proximal tubular cell (RPTC) dedifferentiation is thought to be a prerequisite for regenerative proliferation and migration after renal injury. However, the specific mediators and the mechanisms that regulate RPTC dedifferentiation have not been elucidated. Because epidermal growth factor (EGF) receptor activity is required for recovery from acute renal failure, we examined the role of the EGF receptor in dedifferentiation and the mechanisms of EGF receptor transactivation in primary cultures of RPTCs after oxidant injury. Exposure of confluent RPTCs to H2O2 resulted in 40% cell death, and surviving RPTCs acquired a dedifferentiated phenotype (e.g. elongated morphology and vimetin expression). The EGF receptor, p38, Src, and MKK3 were activated after oxidant injury and inhibition of the EGF receptor or p38 with specific inhibitors (AG1478 and SB203580, respectively) blocked RPTC dedifferentiation. Treatment with SB203580 or adenoviral overexpression of dominant negative p38alpha or its upstream activator, MKK3, inhibited EGF receptor phosphorylation induced by oxidant injury, whereas AG1478 had no effect on p38 phosphorylation. Inhibition of Src with 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) blocked MKK3 and p38 activation, and inhibition of MKK3 blocked p38 activation. In addition, inactivation of Src, MKK3, p38, or the EGF receptor blocked tyrosine phosphorylation of beta-catenin, a key signaling intermediate that is involved in the epithelial-mesenchymal transition and vimentin expression. These results reveal that p38 mediates EGF receptor activation after oxidant injury; that Src activates MMK3, which, in turn, activates p38; and that the EGF receptor signaling pathway plays a critical role in RPTC dedifferentiation.  相似文献   

10.
11.
Optimization of a series of N-1-cycloalkyl-4-aryl-5-(pyrimidin-4-yl)imidazole inhibitors of p38 kinase is reported. Oral administration of inhibitors possessing a cyclohexan-4-ol or piperidin-4-yl group at N-1 in combination with alkoxy, amino(alkyl), phenoxy and anilino substitution at the 2-position of the pyrimidine was found to potently inhibit LPS-induced TNF in mice and rats. The selectivity of these new inhibitors for p38 kinase versus eight other protein kinases is high and in all cases exceeds that of SB 203580.  相似文献   

12.
Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways.  相似文献   

13.
BackgroundDehydroevodiamine (DHE), a pivotal quinazoline alkaloid isolated from Fructus Evodiae (Tetradium ruticarpum (A. Juss.) Hartley), has various pharmacological effects. However, the effect of DHE on gastric injury is still uncharted.PurposeTo clarify the pharmacological effect and mechanism of DHE on gastric injury (GI) induced by indomethacin (IDO).Study designThe gastric injury was induced in rat by oral administration of 5 mg/kg IDO for 7 days. Then the rats were treated with DHE (10, 20, 40 mg/kg, ig) for 7 days.MethodsThe changes of food intake, body weight, gastric pH and general state observation were determined. And HE staining and AB-PAS staining was analyzed. Then, the inflammatory infiltration of gastric tissue was observed through MPO immunohistochemical approach, and the expression of TNF-α, IL-6 and IL-10 were measured. Furthermore, the levels of proteins ERK, p-ERK, P38, p-P38, JNK and p-JNK were determined to elucidate the molecular mechanism of DHE.ResultsDHE alleviated food intake reduction, weight loss and gastric injury induced by IDO and made gastric pH and mucosal thickness return to normal. In addition, DHE could down regulate the expression of MPO, TNF-α and IL-6 and up regulate the expression of IL-10 to reduce the damage induced by inflammatory, and create a healing environment. Furthermore, DHE could significantly inhibit the phosphorylation of ERK and p38 not JNK.ConclusionDHE ameliorated dyspepsia, inflammatory infiltration and tissue damage induced by IDO through ERK and p38 signaling pathways rather than JNK pathway.  相似文献   

14.
MEK1 and MEK2 are closely related, dual-specificity tyrosine/threonine protein kinases found in the Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway. Approximately 30% of all human cancers have a constitutively activated MAPK pathway, and constitutive activation of MEK1 results in cellular transformation. Here we present the X-ray structures of human MEK1 and MEK2, each determined as a ternary complex with MgATP and an inhibitor to a resolution of 2.4 A and 3.2 A, respectively. The structures reveal that MEK1 and MEK2 each have a unique inhibitor-binding pocket adjacent to the MgATP-binding site. The presence of the potent inhibitor induces several conformational changes in the unphosphorylated MEK1 and MEK2 enzymes that lock them into a closed but catalytically inactive species. Thus, the structures reported here reveal a novel, noncompetitive mechanism for protein kinase inhibition.  相似文献   

15.
We have identified a direct physical interaction between the stress signaling p38alpha MAP kinase and the mitogen-activated protein kinases ERK1 and ERK2 by affinity chromatography and coimmunoprecipitation studies. Phosphorylation and activation of p38alpha enhanced its interaction with ERK1/2, and this correlated with inhibition of ERK1/2 phosphotransferase activity. The loss of epidermal growth factor-induced activation and phosphorylation of ERK1/2 but not of their direct activator MEK1 in HeLa cells transfected with the p38alpha activator MKK6(E) indicated that activated p38alpha may sequester ERK1/2 and sterically block their phosphorylation by MEK1.  相似文献   

16.
17.
The ErbB receptor family is implicated in the malignant transformation of several tumor types and is overexpressed frequently in breast, ovarian, and other tumors. The mechanism by which CI-1033 and gemcitabine, either singly or in combination, kill tumor cells was examined in two breast lines, MDA-MB-453 and BT474; both overexpress the ErbB-2 receptor. CI-1033, a potent inhibitor of the ErbB family of receptor tyrosine kinases, reduced levels of activated Akt in MDA-MB-453 cells. This effect alone, however, did not induce apoptosis in these cells. Gemcitabine treatment resulted in a moderate increase in the percentage of apoptotic cells that was accompanied by activation of p38 and MAPK (ERK1/2). CI-1033 given 24 h after gemcitabine produced a significant increase in the apoptotic fraction over treatment with either drug alone. During the combined treatment p38 remained activated, whereas Akt and activated MAPK were suppressed. Substitution of CI-1033 with the phosphatidylinositol 3-kinase inhibitor LY294002 and the MAPK/ERK kinase inhibitor PD 098059 in combination with gemcitabine produced the same results as the combination of CI-1033 and gemcitabine. p38 suppression by SB203580 prevented the enhanced cell kill by CI-1033. In contrast to MDA-MB-453, BT474 cells exhibited activated p38 under unstressed conditions as well as activated Akt and MAPK. Treatment of BT474 cells with CI-1033 inhibited both the phosphorylation of Akt and MAPK and resulted in a 47% apoptotic fraction. Gemcitabine did not cause apoptosis in the BT474 cells. These data indicate that suppression of Akt and MAPK in the presence of activated p38 results in cell death and a possible mechanism for the enhanced apoptosis produced by the combination of CI-1033 and gemcitabine in MDA-MB-453 cells. Furthermore, tumors that depend on ErbB receptor signaling for survival and exhibit activated p38 in the basal state may be susceptible to apoptosis by CI-1033 as a single agent.  相似文献   

18.
The ERK cascade is activated by hormones, cytokines, and growth factors that result in either proliferation or growth arrest depending on the duration and intensity of the ERK activation. Here we provide evidence that the MEK1/ERK module preferentially provides proliferative signals, whereas the MEK2/ERK module induces growth arrest at the G1/S boundary. Depletion of either MEK subtype by RNA interference generated a unique phenotype. The MEK1 knock down led to p21cip1 induction and to the appearance of cells with a senescence-like phenotype. Permanent ablation of MEK1 resulted in reduced colony formation potential, indicating the importance of MEK1 for long term proliferation and survival. MEK2 deficiency, in contrast, was accompanied by a massive induction of cyclin D expression and, thus, CDK4/6 activation followed by nucleophosmin hyperphosphorylation and centrosome over-amplification. Our results suggest that the two MEK subtypes have distinct ways to contribute to a regulated ERK activity and cell cycle progression.  相似文献   

19.
20.
A signaling cascade that includes protein kinase C (PKC), Ras, and MEKK1 regulates involucrin (hINV) gene expression in epidermal keratinocytes (Efimova, T., LaCelle, P., Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395 and Efimova, T., and Eckert, R. L. (2000) J. Biol. Chem. 275, 1601-1607). Because signal transfer downstream of MEKK1 may involve several MAPK kinases (MEKs), it is important to evaluate the regulatory role of each MEK isoform. In the present study we evaluate the role of MEK6 in transmitting this signal. Constitutively active MEK6 (caMEK6) increases hINV promoter activity and increases endogenous hINV levels. The caMEK6-dependent increase in gene expression is inhibited by the p38 MAPK inhibitor, SB203580, and is associated with a marked increase in p38alpha MAPK activity; JNK and ERK kinases are not activated. In addition, hINV gene expression is inhibited by dominant-negative p38alpha and increased when caMEK6 and p38alpha are co-expressed. caMEK6 also activates p38delta, but p38delta inhibits the caMEK6-dependent activation. These results suggest that MEK6 increases hINV gene expression by regulating the balance between activation of p38alpha, which increases gene expression, and p38delta, which decreases gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号