首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that induction of acute experimental esophagitis by repeated perfusion of HCl may affect release of intracellular Ca(2+) stores. We therefore measured cytosolic Ca(2+) in response to a maximally effective dose of ACh in fura 2-AM-loaded lower esophageal sphincter (LES) circular muscle cells and examined the contribution of H(2)O(2) to the reduction in Ca(2+) signal. In normal cells, the ACh-induced Ca(2+) increase was the same in normal-Ca(2+) and Ca(2+)-free medium and was abolished by the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C inhibitor U-73122, confirming that the initial ACh-induced contraction depends on Ca(2+) release from intracellular stores through production of inositol trisphosphate. In LES cells, the ACh-induced Ca(2+) increase in normal-Ca(2+) medium was significantly lower in esophagitis than in normal cells and was further reduced ( approximately 70%) when the cells were incubated in Ca(2+)-free medium. This reduction was partially reversed by the H(2)O(2) scavenger catalase. H(2)O(2) measurements in LES circular muscle showed significantly higher levels in esophagitis than in normal cells. When normal LES cells were incubated with H(2)O(2), the ACh-induced Ca(2+) increase was significantly reduced in normal-Ca(2+) and Ca(2+)-free medium and was similar to that observed in animals with esophagitis. The initial ACh-induced contraction was also reduced in normal cells incubated with H(2)O(2). H(2)O(2), when applied to cells at sufficiently high concentration, produced a visible and prolonged Ca(2+) signal in normal cells. H(2)O(2)-induced cell contraction was also sensitive to depletion of stores by thapsigargin (TG); conversely, H(2)O(2) reduced TG-induced contraction, suggesting that TG and H(2)O(2) may operate through similar mechanisms. Ca(2+)-ATPase activity measurement indicates that H(2)O(2) and TG reduced Ca(2+)-ATPase activity, confirming similarity of mechanism of action. We conclude that H(2)O(2) may be at least partly responsible for impairment of Ca(2+) release in acute experimental esophagitis by inhibiting Ca(2+) uptake and refilling Ca(2+) stores.  相似文献   

2.
This study investigated whether inflammation modulates the mobilization of Ca(2+) in canine colonic circular muscle cells. The contractile response of single cells from the inflamed colon was significantly suppressed in response to ACh, KCl, and BAY K8644. Methoxyverapamil and reduction in extracellular Ca(2+) concentration dose-dependently blocked the response in both normal and inflamed cells. The increase in intracellular Ca(2+) concentration in response to ACh and KCl was significantly reduced in the inflamed cells. However, Ca(2+) efflux from the ryanodine- and inositol 1,4, 5-trisphosphate (IP(3))-sensitive stores, as well as the decrease of cell length in response to ryanodine and IP(3), were not affected. Heparin significantly blocked Ca(2+) efflux and contraction in response to ACh in both conditions. ACh-stimulated accumulation of IP(3) and the binding of [(3)H]ryanodine to its receptors were not altered by inflammation. Ruthenium red partially inhibited the response to ACh in normal and inflamed states. We conclude that the canine colonic circular muscle cells utilize Ca(2+) influx through L-type channels as well as Ca(2+) release from the ryanodine- and IP(3)-sensitive stores to contract. Inflammation impairs Ca(2+) influx through L-type channels, but it may not affect intracellular Ca(2+) release. The impairment of Ca(2+) influx may contribute to the suppression of circular muscle contractility in the inflamed state.  相似文献   

3.
(Na(+)+K(+))-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na(+)/Ca(2+)-exchanger (NCX) plays a critical role in increasing intracellular Ca(2+) concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on (45)Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced (45)Ca influx, suggesting that the Ca(2+) influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca(2+) channel (LTCC) inhibitor, completely blocks the activation of NKA-induced (45)Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca(2+). In contrast, the inhibition of NKA by ouabain induces 4.7-fold (45)Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced (45)Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca(2+) and that the NCX reverse-mode is the major source for the (45)Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca(2+) increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca(2+) influx path ways in cardiomyocytes.  相似文献   

4.
Many stimuli that activate the vascular NADPH oxidase generate reactive oxygen species and increase intracellular Ca(2+), but whether NADPH oxidase activation directly affects Ca(2+) signaling is unknown. NADPH stimulated the production of superoxide anion and H(2)O(2) in human aortic endothelial cells that was inhibited by the NADPH oxidase inhibitor diphenyleneiodonium and was significantly attenuated in cells transiently expressing a dominant negative allele of the small GTP-binding protein Rac1, which is required for oxidase activity. In permeabilized Mag-indo 1-loaded cells, NADPH and H(2)O(2) each decreased the threshold concentration of inositol 1,4,5-trisphosphate (InsP(3)) required to release intracellularly stored Ca(2+) and shifted the InsP(3)-Ca(2+) release dose-response curve to the left. Concentrations of H(2)O(2) as low as 3 microm increased the sensitivity of intracellular Ca(2+) stores to InsP(3) and decreased the InsP(3) EC(50) from 423.2 +/- 54.9 to 276.9 +/- 14. 4 nm. The effect of NADPH on InsP(3)-stimulated Ca(2+) release was blocked by catalase and by diphenyleneiodonium and was not observed in cells lacking functional Rac1 protein. Thus, NADPH oxidase-derived H(2)O(2) increases the sensitivity of intracellular Ca(2+) stores to InsP(3) in human endothelial cells. Since Ca(2+)-dependent signaling pathways are critical to normal endothelial function, this effect may be of great importance in endothelial signal transduction.  相似文献   

5.
6.
Sun L  Yau HY  Lau OC  Huang Y  Yao X 《PloS one》2011,6(9):e25432
We compared the Ca(2+) responses to reactive oxygen species (ROS) between mouse endothelial cells derived from large-sized arteries, aortas (aortic ECs), and small-sized arteries, mesenteric arteries (MAECs). Application of hydrogen peroxide (H(2)O(2)) caused an increase in cytosolic Ca(2+) levels ([Ca(2+)](i)) in both cell types. The [Ca(2+)](i) rises diminished in the presence of U73122, a phospholipase C inhibitor, or Xestospongin C (XeC), an inhibitor for inositol-1,4,5-trisphosphate (IP(3)) receptors. Removal of Ca(2+) from the bath also decreased the [Ca(2+)](i) rises in response to H(2)O(2). In addition, treatment of endothelial cells with H(2)O(2) reduced the [Ca(2+)](i) responses to subsequent challenge of ATP. The decreased [Ca(2+)](i) responses to ATP were resulted from a pre-depletion of intracellular Ca(2+) stores by H(2)O(2). Interestingly, we also found that Ca(2+) store depletion was more sensitive to H(2)O(2) treatment in endothelial cells of mesenteric arteries than those of aortas. Hypoxanthine-xanthine oxidase (HX-XO) was also found to induce [Ca(2+)](i) rises in both types of endothelial cells, the effect of which was mediated by superoxide anions and H(2)O(2) but not by hydroxyl radical. H(2)O(2) contribution in HX-XO-induced [Ca(2+)](i) rises were more significant in endothelial cells from mesenteric arteries than those from aortas. In summary, H(2)O(2) could induce store Ca(2+) release via phospholipase C-IP(3) pathway in endothelial cells. Resultant emptying of intracellular Ca(2+) stores contributed to the reduced [Ca(2+)](i) responses to subsequent ATP challenge. The [Ca(2+)](i) responses were more sensitive to H(2)O(2) in endothelial cells of small-sized arteries than those of large-sized arteries.  相似文献   

7.
Cholesterol-dependent cytolysins (CDCs) represent a large family of conserved pore-forming toxins produced by several Gram-positive bacteria such as Listeria monocytogenes, Streptococcus pyrogenes and Bacillus anthracis. These toxins trigger a broad range of cellular responses that greatly influence pathogenesis. Using mast cells, we demonstrate that listeriolysin O (LLO), a prototype of CDCs produced by L. monocytogenes, triggers cellular responses such as degranulation and cytokine synthesis in a Ca(2+)-dependent manner. Ca(2+) signalling by LLO is due to Ca(2+) influx from extracellular milieu and release of from intracellular stores. We show that LLO-induced release of Ca(2+) from intracellular stores occurs via at least two mechanisms: (i) activation of intracellular Ca(2+) channels and (ii) a Ca(2+) channels independent mechanism. The former involves PLC-IP(3)R operated Ca(2+) channels activated via G-proteins and protein tyrosine kinases. For the latter, we propose a novel mechanism of intracellular Ca(2+) release involving injury of intracellular Ca(2+) stores such as the endoplasmic reticulum. In addition to Ca(2+) signalling, the discovery that LLO causes damage to an intracellular organelle provides a new perspective in our understanding of how CDCs affect target cells during infection by the respective bacterial pathogens.  相似文献   

8.
Two potential mechanisms by which the intracellular Ca(2 stores might modulate catecholamine release from bovine adrenal chromaffin cells were investigated: (i) that the cytosolic Ca(2+)transient caused by Ca(2+)release from the intracellular stores recruits additional chromaffin granules to a readily releasable pool that results in augmented catecholamine release when this is subsequently evoked, and (ii) that the Ca(2+)influx that follows depletion of intracellular stores (i.e. store-operated Ca(2+)entry) triggers release per se thereby augmenting evoked catecholamine release. When histamine or caffeine were applied in Ca(2+)-free perfusion media, a transient elevation of intracellular free Ca(2+)occurred owing to mobilization of Ca(2+)from the stores. When Ca(2+)was later readmitted to the perfusing fluid there followed a prompt and maintained rise in intracellular Ca(2+)concentrations of magnitude related to the degree of store mobilization. In parallel experiments, increased catecholamine secretion was measured under the conditions when Ca(2+)influx following store-mobilization occurred. Furthermore, the size of the catecholamine release increment correlated with the degree of Ca(2+)influx. Store-operated Ca(2+)entry evoked by mobilization with histamine and/or caffeine did not augment nicotine-evoked secretion per se; that is, it augmented evoked catecholamine release only to the extent that it increased basal catecholamine release. The nicotine-evoked catecholamine release was sensitive to cytosolic BAPTA, which, at the concentration used (50 microM BAPTA-AM), reduced release by approximately 25%. However, the increment in basal catecholamine release which followed Ca(2+)influx triggered by Ca(2+)store mobilization was not reduced by intracellular BAPTA. This finding is inconsistent with the hypothesis that the elevated cytosolic Ca(2+)from store mobilization recruits additional vesicles of catecholamine to the sub-plasmalemmal release sites to augment subsequently evoked secretion. This position is supported by the observation that histamine (10 microM) in Ca(2+)-free medium caused a pronounced elevation of cytosolic free Ca(2+), but this caused no greater catecholamine release when Ca(2+)was re-introduced than did prior exposure to Ca(2+)-free medium alone, which caused no elevation of cytosolic free Ca(2+). It is concluded that intracellular Ca(2+)stores can modulate secretion of catecholamines from bovine chromaffin cells by permitting Ca(2+)influx through a store-operated entry pathway. The results do not support the notion that the Ca(2+)released from intracellular stores plays a significant role in the recruitment of vesicles into the ready-release pool under the experimental conditions reported here.  相似文献   

9.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

10.
To investigate cardiac stunning, we recorded intracellular [Ca(2+)], contractions, and electrical activity in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion. After equilibration, ischemia was simulated by exposing myocytes to hypoxia, acidosis, hyperkalemia, hypercapnia, lactate accumulation, and substrate deprivation for 30 min at 37 degrees C. Reperfusion was simulated by exposure to Tyrode solution. Field-stimulated myocytes exhibited stunning upon reperfusion. By 10 min of reperfusion, contraction amplitude decreased to 43.0 +/- 5.5% of preischemic values (n = 15, P < 0.05), although action potential configuration and sarcoplasmic reticulum Ca(2+) stores, assessed with caffeine, were normal. Diastolic [Ca(2+)] and Ca(2+) transients (fura 2) were also normal in stunned myocytes. In voltage-clamped cells, peak L-type Ca(2+) current was reduced to 47.4 +/- 4.5% of preischemic values at 10 min of reperfusion (n = 21, P < 0.05). Contractions elicited by Ca(2+)-induced Ca(2+) release and the voltage-sensitive release mechanism were both depressed in reperfusion. Our observations suggest that stunning is associated with reduced L-type Ca(2+) current but that alterations in Ca(2+) homeostasis and release are not directly responsible for stunning.  相似文献   

11.
Prolactin (PRL) cells from the euryhaline tilapia, Oreochromis mossambicus, behave like osmoreceptors by responding directly to reductions in medium osmolality with increased secretion of the osmoregulatory hormone PRL. Extracellular Ca(2+) is essential for the transduction of a hyposmotic stimulus into PRL release. In the current study, the presence and possible role of intracellular Ca(2+) stores during hyposmotic stimulation was investigated using pharmacological approaches. Changes in intracellular Ca(2+) concentration were measured with fura-2 in isolated PRL cells. Intracellular Ca(2+) stores were depleted in dispersed PRL cells with thapsigargin (1 microM) or cyclopiazonic acid (CPA, 10 microM). Pre-incubation with thapsigargin prevented the rise in [Ca(2+)](i) induced by lysophosphatidic acid (LPA, 1 microM), an activator of the IP(3) signalling cascade, but did not prevent the hyposmotically-induced rise in [Ca(2+)](i) in medium with normal [Ca(2+)] (2mM). Pre-treatment with CPA produced similar results. Prolactin release from dispersed cells followed a pattern that paralleled observed changes in [Ca(2+)](i). CPA inhibited LPA-induced prolactin release but not hyposmotically-induced release. Xestospongin C (1microM), an inhibitor of IP(3) receptors, had no effect on hyposmotically-induced PRL release. Pre-exposure to caffeine (10mM) or ryanodine (1microM) did not prevent a hyposmotically-induced rise in [Ca(2+)](i). Taken together these results indicate the presence of IP(3) and ryanodine-sensitive Ca(2+) stores in tilapia PRL cells. However, the rapid rise in intracellular [Ca(2+)] needed for acute PRL release in response to hyposmotic medium can occur independently of these intracellular Ca(2+) stores.  相似文献   

12.
Phosphoinositide (3,5)-bisphosphate [PI(3,5)P(2)] is a newly identified phosphoinositide that modulates intracellular Ca(2+) by activating ryanodine receptors (RyRs). Since the contractile state of arterial smooth muscle depends on the concentration of intracellular Ca(2+), we hypothesized that by mobilizing sarcoplasmic reticulum (SR) Ca(2+) stores PI(3,5)P(2) would increase intracellular Ca(2+) in arterial smooth muscle cells and cause vasocontraction. Using immunohistochemistry, we found that PI(3,5)P(2) was present in the mouse aorta and that exogenously applied PI(3,5)P(2) readily entered aortic smooth muscle cells. In isolated aortic smooth muscle cells, exogenous PI(3,5)P(2) elevated intracellular Ca(2+), and it also contracted aortic rings. Both the rise in intracellular Ca(2+) and the contraction caused by PI(3,5)P(2) were prevented by antagonizing RyRs, while the majority of the PI(3,5)P(2) response was intact after blockade of inositol (1,4,5)-trisphosphate receptors. Depletion of SR Ca(2+) stores with thapsigargin or caffeine and/or ryanodine blunted the Ca(2+) response and greatly attenuated the contraction elicited by PI(3,5)P(2). The removal of extracellular Ca(2+) or addition of verapamil to inhibit voltage-dependent Ca(2+) channels reduced but did not eliminate the Ca(2+) or contractile responses to PI(3,5)P(2). We also found that PI(3,5)P(2) depolarized aortic smooth muscle cells and that LaCl(3) inhibited those aspects of the PI(3,5)P(2) response attributable to extracellular Ca(2+). Thus, full and sustained aortic contractions to PI(3,5)P(2) required the release of SR Ca(2+), probably via the activation of RyR, and also extracellular Ca(2+) entry via voltage-dependent Ca(2+) channels.  相似文献   

13.
Studies have shown diabetes to be associated with alterations in composition of extracellular matrix and that such proteins modulate signal transduction. The present studies examined if non-enzymatic glycation of fibronectin or a mixed matrix preparation (EHS) alters endothelial cell Ca(2+) signaling following agonist stimulation. Endothelial cells were cultured from bovine aorta and rat heart. To glycate proteins, fibronectin (10 microg/ml), or EHS (2.5 mg/ml) were incubated (37 degrees C, 30 days) with 0.5 M glucose-6-phosphate. Matrix proteins were coated onto cover slips after which cells (10(5) cells/ml) were plated and allowed to adhere for 16 h. For measurement of intracellular Ca(2+), cells were loaded with fura 2 (2 microM) and fluorescence intensity monitored. Bovine cells on glycated EHS showed decreased ability for either ATP (10(-6) M) or bradykinin (10(-7) M) to increase Ca(2+) (i). In contrast, glycated fibronectin did not impair agonist-induced increases in Ca(2+) (i). In the absence of extracellular Ca(2+), ATP elicited a transient increase in Ca(2+) (i) consistent with intracellular release. Re-addition of Ca(2+) resulted in a secondary rise in Ca(2+) (i) indicative of store depletion-mediated Ca(2+) entry. Both phases of Ca(2+) mobilization were reduced in cells on glycated mixed matrix; however, as the ratio of the two components was similar in all cells, glycation appeared to selectively impair Ca(2+) release from intracellular stores. Thapsigargin treatment demonstrated an impaired ability of cells on glycated EHS to increase cytoplasmic Ca(2+) consistent with decreased endoplasmic reticulum Ca(2+) stores. Further support for Ca(2+) mobilization was provided by increased baseline IP(3) levels in cells plated on glycated EHS. Impaired ATP-induced Ca(2+) release could be induced by treating native EHS with laminin antibody or exposing cells to H(2)O(2) (20-200 microM). Glycated EHS impaired Ca(2+) signaling was attenuated by treatment with aminoguanidine or the antioxidant alpha-lipoic acid. The results demonstrate that matrix glycation impairs agonist-induced Ca(2+) (i) increases which may impact on regulatory functions of the endothelium and implicate possible involvement of oxidative stress.  相似文献   

14.
We have previously shown that acetylcholine-induced contraction of oesophageal circular muscle depends on activation of phosphatidylcholine selective phospholipase C and D, which result in formation of diacylglycerol, and of phospholipase 2 which produces arachidonic acid. Diacylglycerol and arachidonic acid interact synergistically to activate protein kinase C. We have therefore investigated the relationship between cytosolic Ca(2+) and activation of phospholipase A(2) in response to acetylcholine-induced stimulation, by measuring the intracellular free Ca(2+) ([Ca(2+)]i), muscle tension, and [3H] arachidonic acid release. Acetylcholine-induced contraction was associated with increased [Ca(2+)]i and arachidonic acid release in a dose-dependent manner. In Ca(2+)-free medium, acetylcholine did not produce contraction, [Ca(2+)]i increase, and arachidonic acid release. In contrast, after depletion of Ca(2+) stores by thapsigargin (3 microM), acetylcholine caused a normal contraction, [Ca(2+)]i increase and arachidonic acid release. The increase in [Ca(2+)]i and arachidonic acid release were attenuated by the M2 receptor antagonist methoctramine, but not by the M3 receptor antagonist p-fluoro-hexahydro siladifenidol. Increase in [Ca(2+)]i and arachidonic acid release by acetylcholine were inhibited by pertussis toxin and C3 toxin. These findings indicate that contraction and arachidonic acid release are mediated through muscarinic M2 coupled to Gi or rho protein activation and Ca(2+) influx. Acetylcholine-induced contraction and the associated increase in [Ca(2+)]i and release of arachidonic acid were completely reduced by the combination treatment with a phospholipase A(2) inhibitor dimethyleicosadienoic acid and a phospholipase D inhibitor pCMB. They increased by the action of the inhibitor of diacylglycerol kinase R59949, whereas they decreased by a protein kinase C inhibitor chelerythrine. These data suggest that in oesophageal circular muscle acetylcholine-induced [Ca(2+)]i increase and arachidonic acid release are mediated through activation of M2 receptor coupled to Gi or rho protein, resulting in the activation of phospholipase A(2) and phospholipase D to activate protein kinase C.  相似文献   

15.
The mechanisms of H2O2-induced Ca2+ release from intracellular stores were investigated in human umbilical vein endothelial cells. It was found that U73122, the selective inhibitor of phospholipase C, could not inhibit the H2O2-induced cytosolic Ca2+ mobilization. No elevation of inositol 1,4,5-trisphosphate (IP3) was detected in cells exposed to H2O2. By loading mag-Fura-2, a Ca2+ indicator, into intracellular store, the H2O2-induced Ca2+ release from intracellular calcium store was directly observed in the permeabilized cells in a dose-dependent manner. This release can be completely blocked by heparin, a well-known antagonist of IP3 receptor, indicating a direct activation of IP3 receptor on endoplasmic reticulum (ER) membrane by H2O2. It was also found that H2O2 could still induce a relatively small Ca2+ release from internal stores after the Ca2+-ATPase on ER membrane and the Ca2+ uptake to mitochondria were simultaneously inhibited by thapsigargin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The later observation suggests that a thapsigargin-insensitive non-mitochondrial intracellular Ca2+ store might be also involved in H2O2-induced Ca2+ mobilization.  相似文献   

16.
The role of acidic intracellular calcium stores in calcium homeostasis was investigated in the Drosophila Schneider cell line 2 (S2) by means of free cytosolic calcium ([Ca2+]i) and intracellular pH (pHi) imaging together with measurements of total calcium concentrations within intracellular compartments. Both a weak base (NH4Cl, 15 mM) and a Na+/H+ ionophore (monensin, 10 microM) evoked cytosolic alkalinization followed by Ca2+ release from acidic intracellular Ca2+ stores. Pretreatment of S2 cells with either thapsigargin (1 microM), an inhibitor of endoplasmic reticulum Ca(2+)-ATPases, or with the Ca2+ ionophore ionomycin (10 microM) was without effect on the amplitude of Ca2+ release evoked by alkalinization. Application of the cholinergic agonist carbamylcholine (100 microM) to transfected S2-DM1 cells expressing a Drosophila muscarinic acetylcholine receptor (DM1) emptied the InsP3-sensitive Ca2+ store but failed to affect the amplitude of alkalinization-evoked Ca2+ release. Glycyl-L-phenylalanine-beta-naphthylamide (200 microM), a weak hydrophobic base known to permeabilize lysosomes by osmotic swelling, triggered Ca2+ release from internal stores, while application of brefeldin A (10 microM), an antibiotic which disperses the Golgi complex, resulted in a smaller increase in [Ca2+]i. These results suggest that the alkali-evoked calcium release is largely attributable to lysosomes, a conclusion that was confirmed by direct measurements of total calcium content of S2 organelles. Lysosomes and endoplasmic reticulum were the only organelles found to have concentrations of total calcium significantly higher than the cytosol. However, NH4Cl (15 mM) reduced the level of total calcium only in lysosomes. Depletion of acidic Ca2+ stores did not elicit depletion-operated Ca2+ entry. They were refilled upon re-exposure of cells to normal saline ([Ca2+]o = 2 mM), but not by thapsigargin-induced [Ca2+]i elevation in Ca(2+)-free saline.  相似文献   

17.
The effect of sphingosine and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on ATP-evoked Ca(2+) mobilization in glioma C6 cells was studied with the Fura-2 video-imaging technique. Treatment of the cells with TPA, an activator of protein kinase C, reduced the ATP-evoked release of Ca(2+) from the intracellular stores, whereas sphingosine, known from in vitro studies as a protein kinase C inhibitor, potentiated Ca(2+) release synergistically with ATP. ATP-induced Ca(2+) mobilization was also enhanced by a specific protein kinase C inhibitor, GF 109203X. Pretreatment of the cells with GF 109203X prevented TPA action, whereas TPA diminished the stimulatory effect of sphingosine. However, this sphingosine effect was only observed after a short (1 min) treatment, whereas a longer treatment (5 min) reduced ATP-evoked Ca(2+) release. It is therefore concluded that sphingosine has two apparent actions: it inhibits protein kinase C providing a positive feedback regulation of receptor signals and it releases Ca(2+) from intracellular stores by an unknown mechanism, possibly independent of protein kinase C.  相似文献   

18.
Streptolysin O (SLO) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pyogenes. SLO induces diverse types of Ca(2+) signalling in host cells which play a key role in membrane repair and cell fate determination. The mechanisms behind SLO-induced Ca(2+) signalling remain poorly understood. Here, we show that in NCI-H441 cells, wild-type SLO as well as non-pore-forming mutant induces long-lasting intracellular Ca(2+) oscillations via IP(3) -mediated depletion of intracellular stores and activation of store-operated Ca(2+) (SOC) entry. SLO-induced activation of SOC entry was confirmed by Ca(2+) add-back experiments, pharmacologically and by overexpression as well as silencing of STIM1 and Orai1 expression. SLO also activated SOC entry in primary cultivated alveolar type II (ATII) cells but Ca(2+) oscillations were comparatively short-lived in nature. Comparison of STIM1 and Orai1 revealed a differential expression pattern in H441 and ATII cells. Overexpression of STIM1 and Orai1 proteins in ATII cells changed the short-lived oscillatory response into a long-lived one. Thus, we conclude that SLO-mediated Ca(2+) signalling involves Ca(2+) release from intracellular stores and STIM1/Orai1-dependent SOC entry. The phenotype of Ca(2+) signalling depends on STIM1 and Orai1 expression levels. Our findings suggest a new role for SOC entry-associated proteins in S. pyogenes-induced lung infection and pneumonia.  相似文献   

19.
We have studied histamine (HA)-evoked intracellular Ca(2+) release in single, freshly isolated myocytes from the guinea pig urinary bladder. Short applications of histamine (5 s) produced a thapsigargin (TG)-sensitive transient increase in intracellular calcium concentration ([Ca(2+)](i)). It was established that histamine and caffeine (Caff) released Ca(2+) from the same intracellular stores in these cells. Reducing the Ca(2+) content of internal stores by incubating cells with U-73343 or cyclopiazonic acid (CPA) inhibited the histamine-evoked Ca(2+) release in 69% and 60% of cells, respectively. Under these conditions, all cells released Ca(2+) in response to either caffeine or acetylcholine (ACh). However, decreasing internal Ca(2+) stores by removing external Ca(2+) inhibited histamine-induced Ca(2+) mobilization in only 22% of cells. A similar small fraction of cells was inhibited when sarcoplasmic reticulum (SR) Ca(2+) pumps were quickly blocked to avoid a significant reduction of luminal Ca(2+). In conclusion, lowering the luminal Ca(2+) content in combination with an impairment of the SR Ca(2+) pump activity significantly diminishes the ability of histamine to evoke an all-or-none intracellular Ca(2+) release.  相似文献   

20.
Apoptosis inhibition rather than enhanced cellular proliferation occurs in prostate cancer (CaP), the most commonly diagnosed malignancy in American men. Therefore, it is important to characterize residual apoptotic pathways in CaP cells. When intracellular Ca(2+) stores are released and plasma membrane "store-operated" Ca(2+) entry channels subsequently open, cytosolic [Ca(2+)] increases and is thought to induce apoptosis. However, cells incapable of releasing Ca(2+) stores are resistant to apoptotic stimuli, indicating that Ca(2+) store release is also important. We investigated whether release of intracellular Ca(2+) stores is sufficient to induce apoptosis of the CaP cell line LNCaP. We developed a method to release stored Ca(2+) without elevating cytosolic [Ca(2+)]; this stimulus induced LNCaP cell apoptosis. We compared the apoptotic pathways activated by intracellular Ca(2+) store release with the dual insults of store release and cytosolic [Ca(2+)] elevation. Earlier processing of caspases-3 and -7 occurred when intracellular store release was the sole Ca(2+) perturbation. Apoptosis was attenuated in both conditions in stable transfected cells expressing antiapoptotic proteins Bclx(L) and catalytically inactive caspase-9, and in both scenarios inactive caspase-9 became complexed with caspase-7. Thus, intracellular Ca(2+) store release initiates an apoptotic pathway similar to that elicited by the dual stimuli of cytosolic [Ca(2+)] elevation and intracellular store release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号