首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperglycemia is a major cause of diabetic vascular disease. High glucose can induce reactive oxygen species (ROS) and nitric oxide (NO) generation, which can subsequently induce endothelial dysfunction. High glucose is also capable of triggering endothelial cell apoptosis. Little is known about the molecular mechanisms and the role of ROS and NO in high glucose-induced endothelial cell apoptosis. This study was designed to determine the involvement of ROS and NO in high glucose-induced endothelial cell apoptosis. Expression of endothelial nitric oxide synthase (eNOS) protein and apoptosis were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to control-level (5.5 mM) and high-level (33 mM) glucose at various periods (e.g., 2, 12, 24, 48 h). We also examined the effect of high glucose on H(2)O(2) production using flow cytometry. The results showed that eNOS protein expression was up-regulated by high glucose exposure for 2-6 h and gradually reduced after longer exposure in HUVECs. H(2)O(2) production and apoptosis, which can be reversed by vitamin C and NO donor (sodium nitroprusside), but enhanced by NOS inhibitor (N(G)-nitro-L-arginine methyl ether), were collated to a different time course (24-48 h) to HUVECs. These results provide the molecular basis for understanding that NO plays a protective role from apoptosis of HUVECs during the early stage (<24 h) of high glucose exposure, but in the late stage (>24 h), high glucose exposure leads to the imbalance of NO and ROS, resulting to the observed apoptosis. This may explain, at least in part, the impaired endothelial function and vascular complication of diabetic mellitus that would occur at late stages.  相似文献   

2.
Increase of intracellular reactive oxygen species (ROS) has been proposed to cause endothelial injury, and oxidized LDL (oxLDL) actions are associated with an early increase of ROS. Estrogen protects vascular cells partly via its antioxidant effects and by preventing lipid peroxidation. However, whether it can inhibit oxLDL-induced stimulation of ROS generation in endothelial cells is unknown. We utilized the fluorescent dye (DCFH-DA) to measure ROS generation and compared the stimulant effect of tert-butylhydroperoxide (TBH) and oxLDL in human umbilical vein endothelial cells (HUVECs). We found that TBH, H2O2, and oxLDL rapidly stimulated ROS generation, and in a dose-dependent manner with TBH. A concentration of estrogen effective in preventing lipid peroxidation was employed either by pretreatment of cells 18 h prior to or by direct co-incubation (30 min) with HUVEC and oxLDL. Estrogen (54 microM) pretreatment significantly suppressed both TBH- and oxLDL- induced stimulation of ROS generation. Both 1 and 54 microM concentration of estrogen could directly inhibit oxLDL-induced ROS production in HUVECs. Thus, either 18 h pretreatment or 30 min co-incubation with estrogen reduced stimulated ROS generation, suggesting that both cellular and direct actions of estrogen may be involved.  相似文献   

3.
Although elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with increased inflammation and vascular remodeling, the mechanism of Hcy-mediated inflammation and vascular remodeling is unclear. The matrix metalloproteinases (MMPs) and adhesion molecules play an important role in vascular remodeling. We hypothesized that HHcy induces inflammation by increasing adhesion molecules and matrix protein expression. Endothelial cells were supplemented with high methionine, and Hcy accumulation was measured by HPLC. Nitric oxide (NO) bioavailability was detected by a NO probe. The protein expression was measured by Western blot analysis. MMP-9 activity was detected by gelatin-gel zymography. We demonstrated that methionine supplement promoted upregulation of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) through increased Hcy accumulation. In addition, increased synthesis of collagen type-1 was also observed. MMP-9 gene expression and protein activity were increased in methionine supplement groups. 3-Deazaadenosine (DZA), an adenosine analogue, prevented high methionine-induced ICAM-1 and VCAM-1 expression and collagen type-1 synthesis. Transfection of endothelial cells with cystathionine-β-synthase (CBS) gene construct, which converts Hcy to cystathionine, reduced Hcy accumulation in high methionine-fed cells. CBS gene transfection reduced the inflammatory response, as evident by attenuated ICAM-1 and VCAM-1 expression. Furthermore, collagen type-1 expression and MMP-9 activity were dramatically attenuated with CBS gene transfection. These results suggested that methionine supplement increased Hcy accumulation, which was associated with inflammatory response and matrix remodeling such as collagen type-1 synthesis and MMP-9 activity. However, in vitro DZA and CBS gene therapy successfully treated the HHcy-induced inflammatory reaction in the methionine metabolism pathway. extracellular matrix; matrix metalloproteinase-9; intercellular cell adhesion molecule-1; vascular cell adhesion molecule-1; collagen type-1; hyperhomocysteinemia  相似文献   

4.
Dai J  Wang X  Feng J  Kong W  Xu Q  Shen X  Wang X 《FEBS letters》2008,582(28):3893-3898
We have previously shown that homocysteine (Hcy) can induce monocyte chemoattractant protein-1 (MCP-1) secretion via reactive oxygen species (ROS) in human monocytes. Here, we show that Hcy upregulates expression of an important antioxidative protein, thioredoxin (Trx), via NADPH oxidase in human monocytes in vitro. The increase of Trx expression and activity inhibited Hcy-induced ROS production and MCP-1 secretion. Of note, 2-week hyperhomocysteinemia (HHcy) ApoE−/− mice showed accelerated lesion formation and parallel lower Trx expression in macrophages than ApoE−/− mice, suggesting that HHcy-induced sustained oxidative stress in vivo might account for impaired Trx and hence increased ROS production and MCP-1 secretion from macrophages, and subsequently accelerated atherogenesis.  相似文献   

5.
Although elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with increased inflammation and vascular remodeling, the mechanism of Hcy-mediated inflammation and vascular remodeling is unclear. The matrix metalloproteinases (MMPs) and adhesion molecules play an important role in vascular remodeling. We hypothesized that HHcy induces inflammation by increasing adhesion molecules and matrix protein expression. Endothelial cells were supplemented with high methionine, and Hcy accumulation was measured by HPLC. Nitric oxide (NO) bioavailability was detected by a NO probe. The protein expression was measured by Western blot analysis. MMP-9 activity was detected by gelatin-gel zymography. We demonstrated that methionine supplement promoted upregulation of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) through increased Hcy accumulation. In addition, increased synthesis of collagen type-1 was also observed. MMP-9 gene expression and protein activity were increased in methionine supplement groups. 3-Deazaadenosine (DZA), an adenosine analogue, prevented high methionine-induced ICAM-1 and VCAM-1 expression and collagen type-1 synthesis. Transfection of endothelial cells with cystathionine-beta-synthase (CBS) gene construct, which converts Hcy to cystathionine, reduced Hcy accumulation in high methionine-fed cells. CBS gene transfection reduced the inflammatory response, as evident by attenuated ICAM-1 and VCAM-1 expression. Furthermore, collagen type-1 expression and MMP-9 activity were dramatically attenuated with CBS gene transfection. These results suggested that methionine supplement increased Hcy accumulation, which was associated with inflammatory response and matrix remodeling such as collagen type-1 synthesis and MMP-9 activity. However, in vitro DZA and CBS gene therapy successfully treated the HHcy-induced inflammatory reaction in the methionine metabolism pathway.  相似文献   

6.
We aimed to test the hypothesis that an enhanced level of reactive oxygen species (ROS) is primarily responsible for the impairment of nitric oxide (NO)-mediated regulation of arteriolar wall shear stress (WSS) in hyperhomocysteinemia (HHcy). Thus flow/WSS-induced dilations of pressurized gracilis muscle arterioles (basal diameter: approximately 170 microm) isolated from control (serum Hcy: 6 +/- 1 microM), methionine diet-induced HHcy rats (4 wk, serum Hcy: 30 +/- 6 microM), and HHcy rats treated with vitamin C, a known antioxidant (4 wk, 150 mg. kg body wt-1.day-1; serum Hcy: 32 +/- 10 microM), were investigated. In vessels of HHcy rats, increases in intraluminal flow/WSS-induced dilations were converted to constrictions. Constrictions were unaffected by inhibition of NO synthesis by N omega-nitro-L-arginine methyl ester (L-NAME). Vitamin C treatment of HHcy rats reversed the WSS-induced arteriolar constrictions to L-NAME-sensitive dilations but did not affect control responses. Similar changes in responses were obtained for the calcium ionophore A-23187. In addition, diastolic and mean arterial blood pressure and serum 8-isoprostane levels (a marker of in vivo oxidative stress) were significantly elevated in rats with HHcy, changes that were normalized by vitamin C treatment. Taken together, our data show that in chronic HHcy long-term vitamin C treatment, by decreasing oxidative stress in vivo, enhanced NO bioavailability, restored the regulation of shear stress in arterioles, and normalized systemic blood pressure. Thus our study provides evidence that oxidative stress is an important in vivo mechanism that is primarily responsible for the development of endothelial dysregulation of WSS in HHcy.  相似文献   

7.
血浆同型半胱氨酸水平升高与动脉粥样硬化   总被引:18,自引:2,他引:16  
Yang F  Tan HM  Wang H 《生理学报》2005,57(2):103-114
心血管疾病已成为当今全球性致残与致死的最重要原因之一。目前确定的冠心病的危险因素主要包括高龄、血脂异常、高血压、糖尿病、吸烟、肥胖症。大量的临床试验及流行病学研究已经证实血浆同型半胱氨酸水平升高是心血管疾病的一个独立的危险因素。健康人的血浆同型半胱氨酸水平为5~10μmol/L。血浆同型半胱氨酸水平严重升高的主要原因是胱硫醚-β-合成酶(cystathionine-β-synthase,CBS)基因的缺陷。CBS基因缺陷的纯合体可导致血浆同型半胱氨酸水平升高至100~500μmol/L。血浆同型半胱氨酸水平严重升高的病人通常伴随神经系统异常、早发性的动脉粥样硬化。叶酸、维生素B6和B12治疗能降低血浆同型半胱氨酸的水平并改善血管内皮功能、减少经皮冠状动脉腔内成形术(percutaneou stransluminal coronary angioplasty,PTCA)术后并发症。迄今为止,血浆同型半胱氨酸水平升高引起心血管疾病的发病机制并未完全明了,目前认为主要与以下几个方面有关:(1)内皮细胞损伤及功能障碍。我们实验室在CBS基因敲除的小鼠模型上证实血浆同型半胱氨酸水平升高能抑制eNOS的活性,导致主动脉内皮功能的障碍。我们还在细胞模型上证实了同型半胱氨酸能显著抑制内皮细胞的增殖。(2)KH固醇和甘油三脂生物合成代谢异常。我们实验室在apoE、CBS双基因敲除的小鼠模型上证实血浆同型半胱氨酸水平升高能改变肝脏的脂肪代谢,增加巨噬细胞对修饰LDL的摄取,从而导致胆固醇脂和甘油三脂在血管壁的堆积,促进主动脉粥样斑块的形成。(3)刺激血管平滑肌细胞增殖。此外还发现同型半胱氨酸能激活蛋白激酶C信号途径,促进胶原蛋白的合成,抑制弹性蛋白和胶原蛋白的交联。(4)激活血栓形成。(5)激活单核细胞。目前认为同型半胱氦酸主要通过以下几个化学机制致病;(1)自氧化产生活性氧。同型半胱氨酸在自氧化的过程中能产生大量的活性氧,从而引起血液中脂蛋白和细胞膜脂质的过氧化损伤,并进一步引起内皮功能的障碍。(2)在腺苷的参与下形成SAH,一种甲基转移抑制剂,导致细胞内的低甲基化。(3)与一氧化氮结合形成亚硝酰物。(4)参与蛋白质的合成。总之,我们和其他实验室的研究结果均表明同型半胱氨酸不仅与动脉粥样硬化相关,而且具有致病效应。尽管补充叶酸、维生素B6和B12等治疗能降低血浆同型半胱氨酸的水平,但是否能降低心血管疾病的风险仍有待于大量的动物研究及临床试验。  相似文献   

8.
Although normally folic acid is given during pregnancy, presumably to prevent neural tube defects, the mechanisms of this protection are unknown. More importantly it is unclear whether folic acid has other function during development. It is known that folic acid re-methylates homocysteine (Hcy) to methionine by methylene tetrahydrofolate reductase-dependent pathways. Folic acid also generates high-energy phosphates, behaves as an antioxidant and improves nitric oxide (NO) production by endothelial NO synthase. Interestingly, during epigenetic modification, methylation of DNA/RNA generate homocysteine unequivocally. The enhanced overexpression of methyl transferase lead to increased yield of Hcy. The accumulation of Hcy causes vascular dysfunction, reduces perfusion in the muscles thereby causing musculopathy. Another interesting fact is that children with severe hyperhomocysteinaemia (HHcy) have skeletal deformities, and do not live past teenage. HHcy is also associated with the progeria syndrome. Epilepsy is primarily caused by inhibition of gamma-amino-butyric-acid (GABA) receptor, an inhibitory neurotransmitter in the neuronal synapse. Folate deficiency leads to HHcy which then competes with GABA for binding on the GABA receptors. With so many genetic and clinical manifestations associated with folate deficiency, we propose that folate deficiency induces epigenetic alterations in the genes and thereby results in disease.  相似文献   

9.
Zhu WG  Li S  Lin LQ  Yan H  Fu T  Zhu JH 《Cellular immunology》2009,254(2):110-116
Atherosclerosis is a long-term chronic inflammatory and immunological disease. Endothelial dysfunction and the dendritic cell (DC) immune response are pivotal early events in atherogenesis. This study investigated the effects and possible mechanisms of action of homocysteine (Hcy) on DC adhesion to and transmigration between endothelial cells (ECs), and indicated a novel immunoregulatory mechanism by which Hcy induces atherogenesis. When ECs were stimulated with increasing concentrations of Hcy, immunofluorescence showed that endothelial reactive oxygen species (ROS) generation strikingly increased, while nitrite assay showed that nitric oxide (NO) release markedly decreased. Furthermore, DC adhesion and transmigration were significantly increased when ECs were activated by Hcy. However, pretreatment of ECs with antioxidant before Hcy markedly attenuated the induction of DC adhesion and transmigration, dependent on the intracellular ROS decrease and endothelial NO increase. In conclusion, DC adhesion and transmigration are significantly increased by vascular oxidative stress under conditions of elevated Hcy levels. These findings provide insight into the inflammatory processes and immune responses occurring in atherosclerosis induced by Hcy.  相似文献   

10.
BackgroundHomocysteine (Hcy) induced vascular endothelial dysfunction is known to be closely associated with oxidative stress and impaired NO system. 1,8-Dihydroxy-3-methoxy-6-methylanthracene-9,10-dione (physcion) has been known to has antioxidative and anti-inflammatory properties.PurposeThe purpose of the present study was to define the protective effect of physcion on Hcy-induced endothelial dysfunction and its mechanisms involved.Study Design and MethodsHyperhomocysteinemia (HHcy) rat model was induced by feeding 3% methionine. A rat thoracic aortic ring model was used to investigate the effects of physcion on Hcy-induced impairment of endothelium-dependent relaxation. Two doses, low (L, 30 mg/kg/day) and high (H, 50 mg/kg/day) of physcion were used in the present study. To construct Hcy-injured human umbilical vein endothelial cells (HUVECs) model, the cells treated with 3 mM Hcy. The effects of physcion on Hcy-induced HUVECs cytotoxicity and apoptosis were studied using MTT and flow cytometry. Confocal analysis was used to determine the levels of intracellular Ca2+. The levels of protein expression of the apoptosis-related markers Bcl-2, Bax, caspase-9/3, and Akt and endothelial nitric oxide synthase (eNOS) were evaluated by western blot.ResultsIn the HHcy rat model, plasma levels of Hcy and malondialdehyde (MDA) were elevated (20.45 ± 2.42 vs. 4.67 ± 1.94 μM, 9.42 ± 0.48 vs. 3.47 ± 0.59 nM, p < 0.001 for both), whereas superoxide dismutase (SOD) and nitric oxide (NO) levels were decreased (77.11 ± 4.78 vs. 115.02 ± 5.63 U/ml, 44.51 ± 4.45 vs. 64.18 ± 5.34 μM, p < 0.001 and p < 0.01, respectively). However, treatment with physcion significantly reversed these changes (11.82 ± 2.02 vs. 20.45 ± 2.42 μM, 5.97 ± 0.72 vs. 9.42 ± 0.48 nM, 108.75 ± 5.65 vs. 77.11 ± 4.78 U/ml, 58.14 ± 6.02 vs. 44.51 ± 4.45 μM, p < 0.01 for all). Physcion also prevented Hcy-induced impairment of endothelium-dependent relaxation in HHcy rats (1.56 ± 0.06 vs. 15.44 ± 2.53 nM EC50 for ACh vasorelaxation, p < 0.05 vs. HHcy). In Hcy-injured HUVECs, physcion inhibited the impaired viability, apoptosis and reactive oxygen species. Hcy treatment significantly increased the protein phosphorylation levels of p38 (2.26 ± 0.20 vs. 1.00 ± 0.12, p <0.01), ERK (2.11 ± 0.21 vs. 1.00 ± 0.11, p <0.01) and JNK. Moreover, physcion reversed the Hcy-induced apoptosis related parameter changes such as decreased mitochondrial membrane potential (MMP) and Bcl-2/Bax protein ratio, and increased protein expression of caspase-9/3 in HUVECs. Furthermore, the downregulation of Ca2+, Akt, eNOS and NO caused by Hcy were recovered with physcion treatment in HUVECs.ConclusionPhyscion prevents Hcy-induced endothelial dysfunction by activating Ca2+- and Akt-eNOS-NO signaling pathways. This study provides the first evidence that physcion might be a candidate agent for the prevention of cardiovascular disease induced by Hcy.  相似文献   

11.
The disrupted metabolism of homocysteine (Hcy) causes hyperhomocysteinemia, a condition associated with the impairment of nitric oxide (NO) bio-availability, tissue hypoxia and increased risk of vascular disease. Here, we examined how Hcy modulates the induction of the stress protein haem oxygenase-1 (HO-1) evoked by NO releasing agents and hypoxia in vascular endothelial cells. We found that Hcy (0.5 mM) markedly reduced the increase in haem oxygenase activity and HO-1 protein expression induced by sodium nitroprusside (SNP, 0.5 mM) but did not affect HO-1 activation mediated by S-nitroso-N-acetyl-penicillamine. Cells pre-treated with Hcy followed by addition of fresh medium containing SNP still exhibited an augmented haem oxygenase activity. Interestingly, high levels of Hcy were also able to abolish hypoxia-mediated HO-1 expression in a concentration-dependent manner. These novel findings indicate that hyperhomocysteinemia interferes with crucial signaling pathways required by cells to respond and adapt to stressful conditions.  相似文献   

12.
Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2S. H2S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.  相似文献   

13.
Hyperhomocysteinemia decreases vascular reactivity and is associated with cardiovascular morbidity and mortality. However, pathogenic mechanisms that increase oxidative stress by homocysteine (Hcy) are unsubstantiated. The aim of this study was to examine the molecular mechanism by which Hcy triggers oxidative stress and reduces bioavailability of nitric oxide (NO) in cardiac microvascular endothelial cells (MVEC). MVEC were cultured for 0-24 h with 0-100 microM Hcy. Differential expression of protease-activated receptors (PARs), thioredoxin, NADPH oxidase, endothelial NO synthase, inducible NO synthase, neuronal NO synthase, and dimethylarginine-dimethylaminohydrolase (DDAH) were measured by real-time quantitative RT-PCR. Reactive oxygen species were measured by using a fluorescent probe, 2',7'-dichlorofluorescein diacetate. Levels of asymmetric dimethylarginine (ADMA) were measured by ELISA and NO levels by the Griess method in the cultured MVEC. There were no alterations in the basal NO levels with 0-100 microM Hcy and 0-24 h of treatment. However, Hcy significantly induced inducible NO synthase and decreased endothelial NO synthase without altering neuronal NO synthase levels. There was significant accumulation of ADMA, in part because of reduced DDAH expression by Hcy in MVEC. Nitrotyrosine expression was increased significantly by Hcy. The results suggest that Hcy activates PAR-4, which induces production of reactive oxygen species by increasing NADPH oxidase and decreasing thioredoxin expression and reduces NO bioavailability in cultured MVEC by 1) increasing NO2-tyrosine formation and 2) accumulating ADMA by decreasing DDAH expression.  相似文献   

14.
Microparticles (MPs) are small membrane vesicles released by stimulated or apoptotic cells, including the endothelium. Hyperhomocysteinemia (HHcy) is a blood disorder characterized by an increase in the plasma concentrations of total homocysteine (Hcy). The plasma Hcy level is determined by environmental factors (dietary habits, i.e. the intake of folic acid, FA) and genetic factors (N 5,N 10-methylenetetrahydro-folate reductase, MTHFR, polymorphism 677C>T). To evaluate whether moderate Hcy concentrations induce endothelial MP formation, the role of FA supplementation and the influence of MTHFR polymorphism were analysed. Human umbilical vein endothelial cells (HUVEC) were treated in vitro with 50 μM of Hcy and methionine (Met). The MP number and apoptotic phenotype were analyzed using flow cytometry. Increasing doses of FA (5, 15 and 50 μM) were used to reduce the HHcy effect. The MTHFR 677C>T polymorphism was determined. HUVEC stimulated by Hcy produced significantly more MPs than HUVEC under the control conditions: 3,551 ± 620 vs 2,270 ± 657 kMP (p = 0.02). Supplementation with FA at concentrations of 5, 15 and 50 μM reduced the MP count in the cell culture supernatant to 345 ± 332, 873 ± 329, and 688 ± 453 kMP, respectively (p = 0.03). MTHFR 677C>T heterozygosity was associated with a significant increase in MP formation after stimulation with Hcy compared to the control conditions: 3,617 ± 152 vs 1,518 ± 343 kMP (p = 0.02). Furthermore, the MTHFR genotype altered MP formation after Met loading. On average, 24% of the entire MP population was apoptotic (annexin V-positive). Endothelial function impairment due to HHcy is related to MP shedding, which may involve platelets and other blood and vascular cells. MP shedding is a physiological response to moderate HHcy.  相似文献   

15.
Picroside II (P‐II), one of the main active components of scrophularia extract, which have anti‐oxidative, anti‐inflammatory effects, but its effect on hyperhomocysteinemia (HHcy) induced endothelial injury remains to be determined. Here, we test whether P‐II protects HHcy‐induced endothelial dysfunction against oxidative stress, inflammation and cell apoptosis. In vitro study using HUVECs, and in hyperhomocysteinemia mouse models, we found that HHcy decreased endothelial SIRT1 expression and increased LOX‐1 expression, subsequently causing reactive oxygen species generation, up‐regulation of NADPH oxidase activity and NF‐κB activation, thereby promoting pro‐inflammatory response and cell apoptosis. Blockade of Sirt1 with Ex527 or siRNASIRT1 increased LOX‐1 expression, whereas overexpression of SIRT1 decreased LOX‐1 expression markedly. P‐II treatment significantly increased SIRT1 expression and reduced LOX‐1 expression, and protected against endothelial cells from Hcy‐induced oxidative injury, inflammation and apoptosis. However, blockade of SIRT1 or overexpression of LOX‐1 attenuated the therapeutic effects of P‐II. In conclusion, our results suggest that P‐II prevents the Hcy induced endothelial damage probably through regulating the SIRT1/LOX‐1 signaling pathway.  相似文献   

16.
Although the issue of estrogen replacement therapy on cardiovascular health is debatable, it has presumable benefits for endothelial function in postmenopausal women. However, the fear of breast cancer has intimidated women contemplating estrogen treatment and limited its long-term application. An effective alternative remedy not associated with breast carcinoma is in serious demand. This study was designed to examine the effect of phytoestrogen alpha-zearalanol (alpha-ZAL) and 17beta-estradiol (E2) on nitric oxide (NO) and endothelin (ET)-1 levels, apoptosis, and apoptotic enzymes in human umbilical vein endothelial cells (HUVEC). HUVEC cells were challenged for 24 h with homocysteine (10-3 M), an independent risk factor for a variety of vascular diseases, in the presence of alpha-ZAL or E2 (10-9 to 10-6 M). Release of NO and ET-1 were measured with enzyme immunoassay. Apoptosis was evaluated by fluorescence-activated cell sorter analysis. Expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), Bax, and Bcl-2 were determined using Western blot. NOS activity was evaluated with 3H-arginine to 3H-citrulline conversion. Our results indicated that Hcy significantly reduced NO production, NOS activity, enhanced ET-1/NO ratio and apoptosis, upregulated iNOS, Bax, and downregulated eNOS, Bcl-2 expression. These effects were significantly attenuated by alpha-ZAL and E2. ZAL displayed a similar potency compared with E2 in antagonizing Hcy-induced effects. In summary, these results suggested that alpha-ZAL may effectively preserve Hcy-induced decrease in NO, increase in ET-1/NO ratio and apoptosis, which contributes to protective effects of phytoestrogens on endothelial function.  相似文献   

17.
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [?log(P value) = 20–31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [?log(P value)] = 4–11; also affected by Hcy-thiolactone, [?log(P value) = 8–14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was ‘atherosclerosis, coronary heart disease’ [?log(P value) = 9–16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34–40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24–35) were ‘small molecule biochemistry, neurological disease,’ and ‘cardiovascular system development and function’; and those affected by Hcy (score = 25–37) were ‘amino acid metabolism, lipid metabolism,’ ‘cellular movement, and cardiovascular and nervous system development and function.’ These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.  相似文献   

18.
19.
Remodeling by its very nature implies synthesis and degradation of extracellular matrix components (such as elastin, collagen, and connexins). Most of the vascular matrix metalloproteinase (MMP) are latent because of the presence of constitutive nitric oxide (NO). However, during oxidative stress peroxinitrite (ONOO-) activates the latent MMPs and instigates vascular remodeling. Interestingly, in mesenteric artery, homocysteine (Hcy) decreases the NO bio-availability, and folic acid (FA, an Hcy-lowering agent) mitigates the Hcy-mediated mesentery artery dysfunction. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) and endothelial nitric oxide synthase (eNOS) increases NO production. The hypothesis was that the Hcy decreased NO bio-availability, in part, activating MMP, decreasing elastin, DDAH-2, eNOS and increased vasomotor response by increasing connexin. To test this hypothesis,the authors used 12-week-old C57BJ/L6 wild type (WT) and hyperhomocysteinemic (HHcy)-cystathione beta synthase heterozygote knockout (CBS+/-) mice. Blood pressure measurements were made by radio-telemetry. WT and MMP-9 knockout mice were administered with Hcy (0.67 mg/ml in drinking water). Superior mesenteric artery and mesenteric arcade were analyzed with light and confocal microscopy. The protein expressions were measured by western blot analysis. The mRNA levels for MMP-9 were measured by RT-PCR. The data showed decreased DDAH-2 and eNOS expressions in mesentery in CBS-/+ mice compared with WT mice. Immuno-fluorescence and western blot results suggest increased MMP-9 and connexin-40 expression in mesenteric arcades of CBS-/+ mice compared with WT mice. The wall thickness of third-order mesenteric artery was increased in CBS-/+ mice compared to WT mice. Hcy treatment increased blood pressure in WT mice. Interestingly, in MMP-9 KO, Hcy did not increase blood pressure. These results may suggest that HHcy causes mesenteric artery remodeling and narrowing by activating MMP-9 and decreasing DDAH-2 and eNOS expressions, compromising the blood flow, instigating hypertension, and acute abdomen pain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号