首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies suggest that the hypothalamo-pituitary-adrenal (HPA) axis is exceedingly active in obese individuals. Experimental studies show that circulating free fatty acids (FFAs) promote the secretory activity of the HPA axis and that human obesity is associated with high circulating FFAs. We hypothesized that HPA axis activity is enhanced and that lowering of circulating FFAs by acipimox would reduce spontaneous secretion of the HPA hormonal ensemble in obese humans. To evaluate these hypotheses, diurnal ACTH and cortisol secretion was studied in 11 obese and 9 lean premenopausal women (body mass index: obese 33.5 +/- 0.9 vs. lean 21.2 +/- 0.6 kg/m(2), P < 0.001) in the early follicular stage of their menstrual cycle. Obese women were randomly assigned to treatment with either acipimox (inhibitor of lipolysis, 250 mg orally four times daily) or placebo in a double-blind crossover design, starting one day before admission until the end of the blood-sampling period. Blood samples were taken during 24 h with a sampling interval of 10 min for assessment of plasma ACTH and cortisol concentrations. ACTH and cortisol secretion rates were estimated by multiparameter deconvolution analysis. Daily ACTH secretion was substantially higher in obese than in lean women (7,950 +/- 1,212 vs. 2,808 +/- 329 ng/24 h, P = 0.002), whereas cortisol was not altered (obese 36,362 +/- 5,639 vs. lean 37,187 +/- 4,239 nmol/24 h, P = 0.912). Acipimox significantly reduced ACTH secretion in the obese subjects (acipimox 5,850 +/- 769 ng/24 h, P = 0.039 vs. placebo), whereas cortisol release did not change (acipimox 33,542 +/- 3,436 nmol/24 h, P = 0.484 vs. placebo). In conclusion, spontaneous ACTH secretion is enhanced in obese premenopausal women, whereas cortisol production is normal. Reduction of circulating FFA concentrations by acipimox blunts ACTH release in obese women, which suggests that FFAs are involved in the pathophysiology of this neuroendocrine anomaly.  相似文献   

2.
It has been suggested that (abdominally) obese individuals are hypersensitive to growth hormone (GH) action. Because GH affects glucose metabolism, this may impact glucose homeostasis in abdominal obesity. Therefore, we studied the effect of GH on glucose metabolism in abdominally obese (OB) and normal-weight (NW) premenopausal women. A 1-h intravenous infusion of GH or placebo was randomly administered to six NW [body mass index (BMI) 21.1 +/- 1.9 kg/m(2)] and six OB (BMI 35.5 +/- 1.5 kg/m(2)) women in a crossover design. Insulin, glucagon, and GH secretion were suppressed by concomitant infusion of somatostatin. Glucose kinetics were measured using a 10-h infusion of [6,6-(2)H(2)]glucose. In both groups, similar physiological GH peaks were reached by infusion of GH. GH strongly stimulated endogenous glucose production (EGP) in both groups. The percent increase was significantly greater in OB than in NW women (29.8 +/- 11.3 vs. 13.3 +/- 7.4%, P = 0.014). Accordingly, GH responsiveness, defined as the maximum response of EGP per unit GH, was increased in OB vs. NW subjects (6.0 +/- 2.1 vs. 2.2 +/- 1.5 micromol.min(-1).mU(-1).l(-1), P = 0.006). These results suggest that the liver is hyperresponsive to GH action in abdominally obese women. The role of the somatotropic ensemble in the control of glucose homeostasis in abdominal obesity is discussed.  相似文献   

3.
Human immunodeficiency virus (HIV)-lipodystrophy is a syndrome characterized by changes in fat distribution and insulin resistance. Prior studies suggest markedly reduced growth hormone (GH) levels in association with excess visceral adiposity among patients with HIV-lipodystrophy. We investigated mechanisms of altered GH secretion in a population of 13 male HIV-infected patients with evidence of fat redistribution, compared with 10 HIV-nonlipodystrophic patients and 11 male healthy controls similar in age and body mass index (BMI). Although similar in BMI, the lipodystrophic group was characterized by increased visceral adiposity, free fatty acids (FFA), and insulin and reduced extremity fat. We investigated ghrelin and the effects of acute lowering of FFA by acipimox on GH responses to growth hormone-releasing hormone (GHRH). We also investigated somatostatin tone, comparing GH response to combined GHRH and arginine vs. GHRH alone with a subtraction algorithm. Our data demonstrate an equivalent number of GH pulses (4.1 +/- 0.6, 4.7 +/- 0.8, and 4.5 +/- 0.3 pulses/12 h in the HIV-lipodystrophic, HIV-nonlipodystrophic, and healthy control groups, respectively, P > 0.05) but markedly reduced GH secretion pulse area (1.14 +/- 0.27 vs. 4.67 +/- 1.24 ng.ml(-1).min, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 1.14 +/- 0.27 vs. 3.18 +/- 0.92 ng.ml(-1).min, P < 0.05 HIV-lipodystrophic vs. control), GH pulse area, and GH pulse width in the HIV-lipodystrophy patients compared with the control groups. Reduced ghrelin (418 +/- 46 vs. 514 +/- 37 pg/ml, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 418 +/- 46 vs. 546 +/- 45 pg/ml, P < 0.05, HIV-lipodystrophic vs. control), impaired GH response to GHRH by excess FFA, and increased somatostatin tone contribute to reduced GH secretion in patients with HIV-lipodystrophy. These data provide novel insight into the metabolic regulation of GH secretion in subjects with HIV-lipodystrophy.  相似文献   

4.
We have previously shown that sex and obesity independently affect basal very low density lipoprotein (VLDL)-triglyceride (TG) kinetics. In the present study, we investigated the effect of hyperglycemia-hyperinsulinemia on VLDL-TG kinetics in lean and obese men and women (n = 6 in each group). VLDL-TG kinetics were measured during basal, postabsorptive conditions and during glucose infusion (5.5 mg x kg FFM(-1) x min(-1)) by using [(2)H(5)]glycerol bolus injection in conjunction with compartmental modeling analysis. Basal VLDL-TG secretion in plasma was greater in obese than in lean men (7.8 +/- 0.6 and 2.9 +/- 0.4 micromol x l plasma(-1) x min(-1); P < 0.001) but was not different in lean and obese women (5.0 +/- 1.1 and 5.9 +/- 1.1 micromol x l plasma(-1) x min(-1)). Glucose infusion decreased the VLDL-TG secretion rate by approximately 50% in lean and obese men and in lean women (to 1.5 +/- 0.4, 4.0 +/- 0.6, and 2.2 +/- 0.4 micromol x l plasma(-1) x min(-1), respectively; all P < 0.05) but had no effect on the VLDL-TG secretion rate in obese women (4.9 +/- 1.0 micromol x l plasma(-1) x min(-1)). These results demonstrate that both sex and adiposity affect the regulation of VLDL-TG metabolism. Glucose and insulin decrease VLDL-TG production in both lean men and lean women; obesity is associated with resistance to the glucose- and insulin-mediated suppression of VLDL-TG secretion in women, but not in men.  相似文献   

5.
We examined gender differences in growth hormone (GH) secretion during rest and exercise. Eighteen subjects (9 women and 9 men) were tested on two occasions each [resting condition (R) and exercise condition (Ex)]. Blood was sampled at 10-min intervals from 0600 to 1200 and was assayed for GH by chemiluminescence. At R, women had a 3.69-fold greater mean calculated mass of GH secreted per burst compared with men (5.4 +/- 1.0 vs. 1.7 +/- 0.4 microg/l, respectively) and higher basal (interpulse) GH secretion rates, which resulted in greater GH production rates and serum GH area under the curve (AUC; 1,107 +/- 194 vs. 595 +/- 146 microg x l(-1) x min, women vs. men; P = 0.04). Compared with R, Ex resulted in greater mean mass of GH secreted per burst, greater mean GH secretory burst amplitude, and greater GH AUC (1,196 +/- 211 vs. 506 +/- 90 microg x l(-1) x min, Ex vs. R, respectively; P < 0.001). During Ex, women attained maximal serum GH concentrations significantly earlier than men (24 vs. 32 min after initiation of Ex, respectively; P = 0.004). Despite this temporal disparity, both genders had similar maximal serum GH concentrations. The change in AUC (adjusted for unequal baselines) was similar for men and women (593 +/- 201 vs. 811 +/- 268 microg x l(-1) x min), but there were significant gender-by-condition interactive effects on GH secretory burst mass, pulsatile GH production rate, and maximal serum GH concentration. We conclude that, although women exhibit greater absolute GH secretion rates than men both at rest and during exercise, exercise evokes a similar incremental GH response in men and women. Thus the magnitude of the incremental secretory GH response is not gender dependent.  相似文献   

6.
Short sleep appears to be strongly associated with obesity and altered metabolic function, and sleep and growth hormone (GH) secretion seems interlinked. In obesity, both the GH-insulin-like-growth-factor-I (GH-IGF-I) axis and sleep have been reported to be abnormal, however, no studies have investigated sleep in relation to the GH-IGF-I axis and weight loss in obese subjects. In this study polygraphic sleep recordings, 24-h GH release, 24-h leptin levels, free-IGF-I, total-IGF-I, IGF-binding protein-3 (IGFBP-3), acid-labile subunit (ALS), cortisol and insulin sensitivity were determined in six severely obese subjects (BMI: 41+/-1 kg/m(2), 32+/-2 years of age), cross-sectional at baseline, and longitudinal after a dramatically diet-induced weight loss (36+/-7 kg). Ten age- and gender-matched nonobese subjects served as controls. Sleep duration (360+/-17 vs. 448+/-15 min/night; P<0.01), 24-h GH (55+/-9 vs. 344+/-55 mU/l.24 h; P<0.01), free-IGF-I (2.3+/-0.42 vs. 5.7+/-1.2 microg/l; P<0.01), and total-IGF-I (186+/-21 vs. 301+/-18 microg/l; P<0.01) were significantly decreased and 24-h leptin levels were increased (35+/-5 vs. 12+/-3 microg/l; P<0.01) in obese subjects at pre-weight loss compared with nonobese subjects After diet-induced weight loss the differences in GH, free IGF-I, and leptin were no longer present between previously obese and nonobese subjects, whereas a significant difference in sleep duration and total IGF-I levels persisted. Rapid eye movement (REM) sleep, non-REM sleep, IGFBP-3, ALS, and cortisol levels were similar in obese and nonobese subjects. Sleep duration, 24-h GH, and IGF-I levels were decreased and 24-h leptin levels were increased in obese subjects. We conclude that hyposomatotropism and hyperleptinemia in obesity are transient phenomena reversible with weight loss, whereas short sleep seems to persist after weight has been reduced dramatically.  相似文献   

7.
The present study examined the growth hormone (GH) response to repeated bouts of maximal sprint cycling and the effect of cycling at different pedaling rates on postexercise serum GH concentrations. Ten male subjects completed two 30-s sprints, separated by 1 h of passive recovery on two occasions, against an applied resistance equal to 7.5% (fast trial) and 10% (slow trial) of their body mass, respectively. Blood samples were obtained at rest, between the two sprints, and for 1 h after the second sprint. Peak and mean pedal revolutions were greater in the fast than the slow trial, but there were no differences in peak or mean power output. Blood lactate and blood pH responses did not differ between trials or sprints. The first sprint in each trial elicited a serum GH response (fast: 40.8 +/- 8.2 mU/l, slow: 20.8 +/- 6.1 mU/l), and serum GH was still elevated 60 min after the first sprint. The second sprint in each trial did not elicit a serum GH response (sprint 1 vs. sprint 2, P < 0.05). There was a trend for serum GH concentrations to be greater in the fast trial (mean GH area under the curve after sprint 1 vs. after sprint 2: 1,697 +/- 367 vs. 933 +/- 306 min x mU(-1) x l(-1); P = 0.05). Repeated sprint cycling results in an attenuation of the GH response.  相似文献   

8.
Growth hormone (GH) can induce an accelerated lipolysis. Impaired secretion of GH in obesity results in the consequent loss of the lipolytic effect of GH. Dietary restriction as a basic treatment for obesity is complicated by poor compliance, protein catabolism, and slow rates or weight loss. GH has an anabolic effect by increasing insulin-like growth factor (IGF)-I. We investigated the effects of GH treatment and dietary restriction on lipolytic and anabolic actions, as well as the consequent changes in insulin and GH secretion in obesity. 24 obese subjects (22 women and 2 men; 22-46 years old) were fed a diet of 25 kcal/kg ideal body weight (IBW) with 1.2 g protein/kg IBW daily and were treated with recombinant human GH (n = 12, 0.18 U/kg IBW/week) or placebo (n = 12, vehicle injection) in a 12-week randomized, double-blind and placebo-controlled trial. GH treatment caused a 1.6-fold increase in the fraction of body weight lost as fat and a greater loss of visceral fat area than placebo treatment (35.3 vs. 28.5%, p < 0.05). In the placebo group, there was a loss in lean body mass (-2.62 +/- 1.51 kg) and a negative nitrogen balance (-4.52 +/- 3.51 g/day). By contrast, the GH group increased in lean body mass (1.13 +/- 1.04 kg) and had a positive nitrogen balance (1.81 +/- 2.06 g/day). GH injections caused a 1.6-fold increase in IGF-I, despite caloric restriction. GH response to L-dopa stimulation was blunted in all subjects and it was increased after treatment in both groups. GH treatment did not induce a further increase in insulin levels during an oral glucose tolerance test (OGTT) but significantly decreased free fatty acid (FFA) levels during OGTT. The decrease in FFA area under the curve during OGTT was positively correlated with visceral fat loss. This study demonstrates that in obese subjects given a hypocaloric diet, GH accelerates body fat loss, exerts anabolic effects and improves GH secretion. These findings suggest a possible therapeutic role of low-dose GH with caloric restriction for obesity.  相似文献   

9.
We recently showed that prolactin (PRL) release is considerably enhanced in obese women in proportion to the size of their visceral fat mass. PRL release is inhibited by dopamine 2 receptor (D2R) activation, and dietary restriction/weight loss are associated with increased dopaminergic signaling in animals. Therefore, we hypothesized that enhanced PRL release in obese humans would be reversed by weight loss. To evaluate this postulate, we measured 24-h plasma PRL concentrations at 10-min intervals in 11 obese premenopausal women (BMI 33.3 +/- 0.7 kg/m2) before and after weight loss (50% reduction of overweight/15% absolute weight loss, using a very low-calorie diet) in the follicular phase of their menstrual cycle. The 24-h PRL concentration profiles were analyzed by a peak detection program (Cluster) and a wave form-independent deconvolution technique (Pulse). Spontaneous 24-h PRL secretion was significantly reduced in obese women [mean daily release, before 128 +/- 24 vs. after weight loss 110 +/- 17 microg/liter distribution volume (Vdl)(-1) x 24 h, P = 0.05]. Body weight loss particularly blunted PRL secretory burst mass (Pulse area, before 230 +/- 28 vs. after weight loss 221 +/- 31 microg/Vdl(-1) x 24 h, P = 0.03), whereas burst frequency was unaffected (no. of pulses, before 11 +/- 1 vs. after weight loss 12 +/- 1 n/24 h, P = 0.69). Thus elevated PRL secretion rate in obese women is significantly reduced after loss of 50% of overweight. We speculate that amelioration of deficit D2R-mediated neurotransmission and/or diminutions of circulating leptin/estrogen levels might be involved in the physiology of this phenomenon.  相似文献   

10.
We evaluated abdominal adipose tissue leptin production during short-term fasting in nine lean [body mass index (BMI) 21 +/- 1 kg/m(2)] and nine upper body obese (BMI 36 +/- 1 kg/m(2)) women. Leptin kinetics were determined by arteriovenous balance across abdominal subcutaneous adipose tissue at 14 and 22 h of fasting. At 14 h of fasting, net leptin release from abdominal adipose tissue in obese subjects (10.9 +/- 1.9 ng x 100 g tissue x (-1) x min(-1)) was not significantly greater than the values observed in the lean group (7.6 +/- 2.1 ng x 100 g(-1) x min(-1)). Estimated whole body leptin production was approximately fivefold greater in obese (6.97 +/- 1.18 microg/min) than lean subjects (1.25 +/- 0.28 microg/min) (P < 0.005). At 22 h of fasting, leptin production rates decreased in both lean and obese groups (to 3.10 +/- 1.31 and 10.5 +/- 2.3 ng x 100 g adipose tissue(-1) x min(-1), respectively). However, the relative declines in both arterial leptin concentration and local leptin production in obese women (arterial concentration 13.8 +/- 4.4%, local production 10.0 +/- 12.3%) were less (P < 0.05 for both) than the relative decline in lean women (arterial concentration 39.0 +/- 5.5%, local production 56.9 +/- 13.0%). This study demonstrates that decreased leptin production accounts for the decline in plasma leptin concentration observed after fasting. However, compared with lean women, the fasting-induced decline in leptin production is blunted in women with upper body obesity. Differences in leptin production during fasting may be responsible for differences in the neuroendocrine response to fasting previously observed in lean and obese women.  相似文献   

11.
The effect of obesity on regional skeletal muscle and adipose tissue amino acid metabolism is not known. We evaluated systemic and regional (forearm and abdominal subcutaneous adipose tissue) amino acid metabolism, by use of a combination of stable isotope tracer and arteriovenous balance methods, in five lean women [body mass index (BMI) <25 kg/m(2)] and five women with abdominal obesity (BMI 35.0-39.9 kg/m(2); waist circumference >100 cm) who were matched on fat-free mass (FFM). All subjects were studied at 22 h of fasting to ensure that the subjects were in net protein breakdown during this early phase of starvation. Leucine rate of appearance in plasma (an index of whole body proteolysis), expressed per unit of FFM, was not significantly different between lean and obese groups (2.05 +/- 0.18 and 2.34 +/- 0.04 micromol x kg FFM(-1) x min(-1), respectively). However, the rate of leucine release from forearm and adipose tissues in obese women (24.0 +/- 4.8 and 16.6 +/- 6.5 nmol x 100 g(-1) x min(-1), respectively) was lower than in lean women (66.8 +/- 10.6 and 38.6 +/- 7.0 nmol x 100 g(-1) x min(-1), respectively; P < 0.05). Approximately 5-10% of total whole body leucine release into plasma was derived from adipose tissue in lean and obese women. The results of this study demonstrate that the rate of release of amino acids per unit of forearm and adipose tissue at 22 h of fasting is lower in women with abdominal obesity than in lean women, which may help obese women decrease body protein losses during fasting. In addition, adipose tissue is a quantitatively important site for proteolysis in both lean and obese subjects.  相似文献   

12.
Skeletal muscle from extremely obese individuals exhibits decreased lipid oxidation compared with muscle from lean controls. It is unknown whether this effect is observed in vivo or whether the phenotype is preserved after massive weight loss. The objective of this study was to compare free fatty acid (FFA) oxidation during rest and exercise in female subjects who were either lean [n = 7; body mass index (BMI) = 22.6 +/- 2.2 kg/m(2)] or extremely obese (n = 10; BMI = 40.8 +/- 5.4 kg/m(2)) or postgastric bypass patients who had lost >45 kg (weight reduced) (n = 6; BMI = 33.7 +/- 9.9 kg/m(2)) with the use of tracer ([(13)C]palmitate and [(14)C]acetate) methodology and indirect calorimetry. The lean group oxidized significantly more plasma FFA, as measured by percent fatty acid uptake oxidized, than the extremely obese or weight-reduced group during rest (66.6 +/- 14.9 vs. 41.5 +/- 16.4 vs. 39.9 +/- 15.3%) and exercise (86.3 +/- 11.9 vs. 56.3 +/- 22.1 vs. 57.3 +/- 20.3%, respectively). BMI significantly correlated with percent uptake oxidized during both rest (r = -0.455) and exercise (r = -0.459). In conclusion, extremely obese women and weight-reduced women both possess inherent defects in plasma FFA oxidation, which may play a role in massive weight gain and associated comorbidities.  相似文献   

13.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

14.
In obesity there is a decrease in basal and stimulated GH secretion. IGF-I, which has negative feedback effects on GH secretion, could be the initial mediator of such alterations. We studied IGF-I levels in obese subjects and their relationship to the obesity level and GH secretion. We determined plasma IGF-I, basal and stimulated GH in 30 normal and 30 obese women and related these variables to obesity indices (body mass index, BMI, and % overweight). Baseline plasma GH values were 1.2 +/- 0.3 and 2.3 +/- 0.6 micrograms/l in obese subjects and controls, respectively (NS). Mean peak GH secretion after stimuli were 11.2 +/- 1.4 and 34.4 +/- 5.6 micrograms/l in obese subjects and controls, respectively (p less than 0.001). Plasma IGF-I were 1.0 +/- 0.1 U/ml and 0.7 +/- 0.1 U/l in obese subjects and controls, respectively (NS). There was a significant negative correlation between plasma IGF-I and age (r = -0.55, p less than 0.001) and a significant negative correlation between mean peak GH secretion and weight (r = -0.60, p less than 0.001), BMI (r = -0.64, p less than 0.001) and percentage of ideal body weight (r = -0.67, p less than 0.001). We did not find any correlation between IGF-I and indices of overweight. These data suggest that the reduced GH secretion found in obesity is not related to a negative feedback inhibition by elevated levels of IGF-I and that adiposity is not associated with a decline in IGF-I levels. We confirm the existence of a negative correlation between GH secretion and obesity indices.  相似文献   

15.
The effects of obesity and weight loss on lipoprotein kinetics were evaluated in six lean women [body mass index (BMI): 21 +/- 1 kg/m(2)] and seven women with abdominal obesity (BMI: 36 +/- 1 kg/m(2)). Stable isotope tracer techniques, in conjunction with compartmental modeling, were used to determine VLDL-triglyceride (TG) and apolipoprotein B-100 (apoB-100) secretion rates in lean women and in obese women before and after 10% weight loss. VLDL-TG and VLDL-apoB-100 secretion rates were similar in lean and obese women. Weight loss decreased the rate of VLDL-TG secretion by approximately 40% (from 0.41 +/- 0.05 to 0.23 +/- 0.03 micromol x kg fat-free mass(-1) x min(-1); P < 0.05). The relative decline in VLDL-TG produced from nonsystemic fatty acids, derived from intraperitoneal and intrahepatic TG, was greater (61 +/- 7%) than the decline in VLDL-TG produced from systemic fatty acids, predominantly derived from subcutaneous TG (25 +/- 8%; P < 0.05). Weight loss did not affect VLDL-apoB-100 secretion rate. We conclude that weight loss decreases the rate of VLDL-TG secretion in women with abdominal obesity, primarily by decreasing the availability of nonsystemic fatty acids. There is a dissociation in the effect of weight loss on VLDL-TG and apoB-100 metabolic pathways that may affect VLDL particle size.  相似文献   

16.
Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P < 0.05; 2.37 +/- 0.5 vs. 1.64 +/- 0.3, P < 0.05; 2.81 +/- 0.9 vs. 3.32 +/- 1.02%/min, P < 0.05) but not in control women (3.9 +/- 0.6 vs. 2.8 +/- 0.5 mU/l; 0.78 +/- 0.1 vs. 0.49 +/- 0.1; 4.36 +/- 1.1 vs. 4.37 +/- 1.2%/min). In the whole population, the quantity of visceral fat, estimated by computerized tomography scan, was correlated with the increment of plasma insulin and HOMA-IR during HC infusion [Delta mean(30-240) insulin (r = 0.61, P < 0.05), Delta mean(30-240) HOMA-IR (r = 0.66, P < 0.01)]. The increase of PAI-1 between time(180) and time(240) after HC was higher in obese women (+25%) than in controls (+12%) (P < 0.05), whereas no differential effect between groups was observed for free fatty acids or adiponectin. A moderate hypercortisolism, equivalent to that induced by a mild stress, has more pronounced consequences on insulin sensitivity in abdominally obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.  相似文献   

17.
We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.  相似文献   

18.
Growth hormone (GH) therapy is often associated with adverse side effects, including impaired insulin sensitivity. GH treatment of children with idiopathic short stature does not lead to an optimized final adult height. It has been demonstrated that FFA reduction induced by pharmacological antilipolysis can stimulate GH secretion per se in both normal subjects and those with GH deficiency. However, to date, no investigation has been undertaken to establish efficacy of combination treatment with GH and FFA regulators on linear body growth. Using a model of maternal undernutrition in the rat to induce growth-restricted offspring, we investigated the hypothesis that combination treatment with GH and FFA regulators can enhance linear body growth above that of GH alone. At postnatal day 28, male offspring of normally nourished mothers (controls) and offspring born with low birth weight [small for gestational age (SGA)] were treated with saline, GH, or GH (5 mg.kg(-1).day(-1)) in combination with acipimox (GH + acipimox, 20 mg.kg(-1).day(-1)) or fenofibrate (GH + fenofibrate, 30 mg.kg(-1).day(-1)) for 40 days. GH plus acipimox treatment significantly enhanced linear body growth in the control and SGA animals above that of GH, as quantified by tibial and total body length. Treatment with GH significantly increased fasting plasma insulin, insulin-to-glucose ratio, and plasma volumes in control and SGA animals but was not significantly different between saline and GH-plus-acipimox-treated animals. GH-induced lipolysis was blocked by GH plus acipimox treatment in both control and SGA animals, concomitant with a significant reduction in fasting plasma FFA and insulin concentrations. This is the first study to show that GH plus acipimox combination therapy, via pharmacological blocking of lipolysis during GH exposure, can significantly enhance the efficacy of GH in linear growth promotion and ameliorate unwanted metabolic side effects.  相似文献   

19.
Cyproheptadine (CPH)--a putative serotonin antagonist--is known to inhibit growth hormone (GH) response to various pharmacological stimuli, as well as during sleep. To elucidate the possible site at which this drug takes effect, we examined plasma GH and somatostatin response to i.v. GHRH1-44 (1 microgram/kg body wt.) before and after CPH treatment in 10 healthy volunteers. The oral administration of CPH (8-12 mg daily for 5 days; total dose 56 mg) significantly curbed GH response to GHRH as expressed in peak plasma GH values (32.0 +/- 6.1 micrograms/l vs. 12.6 +/- 3.2 micrograms/l; P less than 0.01) and in integrated GH response area (2368 +/- 517 micrograms x l-1 x 2 h vs. 744 +/- 172 micrograms x l-1 x 2 h; P less than 0.01). Plasma somatostatin levels did not change in response to GHRH.  相似文献   

20.
We administered two different growth hormone-releasing hormones (GHRH) to 20 short, prepubertal children who had spontaneous secretion of growth hormone (GH), assessed from 24-hour GH secretion profiles (72 sampling periods of 20 min). We compared one i.v. injection of 1 microgram/kg of GHRH 1-40 with that of GHRH 1-29 regarding serum concentrations of GH, prolactin, luteinizing hormone, follicle-stimulating hormone and IGF-I. The children were allocated to two groups without statistical randomization. Both groups were given both peptides, with at least 1 week in between. The first group started with GHRH 1-40, the other with GHRH 1-29. The peptides both induced an increased serum concentration of GH of the same magnitude: mean maximal peak of 89 +/- 12 mU/l after GHRH 1-40 and 94 +/- 10 mU/l after GHRH 1-29 (n.s.). The mean difference in maximum serum GH concentration in each child after injection was 52 +/- 9 mU/l, range 1-153 mU/l. GHRH 1-29 also induced a short-term, small increase in the concentrations of prolactin (p less than 0.05), luteinizing hormone (p less than 0.01) and follicle-stimulating hormone (p less than 0.05). We conclude that the shorter sequence GHRH 1-29, when given in a dose of 1 microgram/kg, gives a rise in serum concentration of GH similar to that after the native form GHRH 1-40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号