首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The association of p120-catenin (p120) with the juxtamembrane domain (JMD) of vascular endothelial (VE)-cadherin is required to maintain VE-cadherin levels and transendothelial resistance (TEER) of endothelial cell monolayers. To distinguish whether decreased TEER was due to a loss of p120 and not to the decrease in VE-cadherin, we established a system in which p120 was depleted by short hairpin RNA delivered by lentivirus and VE-cadherin was restored via expression of VE-cadherin fused to green fluorescent protein (GFP). Loss of p120 resulted in decreased TEER, which was associated with decreased expression of VE-cadherin, β-catenin, plakoglobin, and α-catenin. Decreased TEER was rescued by restoration of p120 but not by the expression of VE-cadherin-GFP, despite localization of VE-cadherin-GFP at cell-cell borders. Expression of VE-cadherin-GFP restored levels of β-catenin and α-catenin but not plakoglobin, indicating that p120 may be important for recruitment of plakoglobin to the VE-cadherin complex. To evaluate the role of p120 interaction with Rho GTPase in regulating endothelial permeability, we expressed a recombinant form of p120, lacking the NH(2) terminus and containing alanine substitutions, that eliminates binding of Rho to p120. Expression of this isoform restored expression of the adherens junction complex and rescued permeability as measured by TEER. These results demonstrate that p120 is required for maintaining VE-cadherin expression and TEER independently of its NH(2) terminus and its role in regulating Rho.  相似文献   

2.

Introduction

Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation.

Methods

EC monolayer permeability in human pulmonary artery endothelial cells (HPAEC) and human aortic endothelial cells (HAEC) was monitored by changes in transendothelial electrical resistance (TER) across EC monolayers. Actin cytoskeleton was examined by immunostaining with Texas Red labeled phalloidin. Phosphorylation of myosin light chains (MLC) and VE-Cadherin was examined by Western blot and immunofluorescence techniques. The role of VEGFR2 in OxPAPC-induced permeability and cytoskeletal arrangement were determined using siRNA-induced VEGFR2 knockdown.

Results

Low OxPAPC concentrations (5–20 µg/ml) induced a barrier protective response in both HPAEC and HAEC, while high OxPAPC concentrations (50–100 µg/ml) caused a rapid increase in permeability ; actin stress fiber formation and increased MLC phosphorylation were observed as early as 30 min after treatment. VEGFR2 knockdown dramatically decreased the amount of MLC phosphorylation and stress fiber formation caused by high OxPAPC concentrations with modest effects on the amount of VE-cadherin phosphorylation at Y731. We present evidence that activation of Rho is involved in the OxPAPC/VEGFR2 mechanism of EC permeability induced by high OxPAPC concentrations. Knockdown of VEGFR2 did not rescue the early drop in TER but prevented further development of OxPAPC-induced barrier dysfunction.

Conclusions

This study shows that VEGFR2 is involved in the delayed phase of EC barrier dysfunction caused by high OxPAPC concentrations and contributes to stress fiber formation and increased MLC phosphorylation.  相似文献   

3.
Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca(2+)-dependent, homophilic VE-cadherin binding of endothelial cells, derived from human umbilical veins and grown as monolayers, was disrupted with EGTA, an antibody to the extracellular domain of VE-cadherin, or gene silencing of VE-cadherin with small interfering RNA. All three protocols caused a reduction in the immunofluorescent localization of VE-cadherin at intercellular junctions, the separation of adjacent cells, and a decrease in basal endothelial electrical resistance. In all three conditions, S1P rapidly increased endothelial electrical resistance. These findings demonstrate that S1P enhances the endothelial barrier independently of homophilic VE-cadherin binding. Junctional localization of VE-cadherin, however, was associated with the sustained activity of S1P. Imaging with phase-contrast and differential interference contrast optics revealed that S1P induced cell spreading and closure of intercellular gaps. Pretreatment with latrunculin B, an inhibitor of actin polymerization, or Y-27632, a Rho kinase inhibitor, attenuated cell spreading and the rapid increase in electrical resistance induced by S1P. We conclude that S1P rapidly closes intercellular gaps, resulting in an increased electrical resistance across endothelial cell monolayers, via cell spreading and Rho kinase and independently of VE-cadherin.  相似文献   

4.
Substantial evidence indicates that endothelial dysfunction plays a critical role in atherogenesis. We previously demonstrated that apolipoprotein(a) (apo(a); the distinguishing protein component of the atherothrombotic risk factor lipoprotein(a)) elicits rearrangement of the actin cytoskeleton in human umbilical vein endothelial cells, characterized by increased myosin light chain (MLC) phosphorylation via a Rho/Rho kinase-dependent signaling pathway. Apo(a) contains kringle (K)IV and KV domains similar to those in plasminogen: apo(a) contains 10 types of plasminogen KIV-like sequences, followed by sequences homologous to the plasminogen KV and protease domains. Several of the apo(a) kringles contain lysine-binding sites (LBS) that have been proposed to contribute to the pathogenicity of Lp(a). Here we demonstrate that apo(a)-induced endothelial barrier dysfunction is mediated via a Rho/Rho kinase-dependent signaling pathway that results in increased MYPT1 phosphorylation and hence decreased MLC phosphatase activity, thus leading to an increase in MLC phosphorylation, stress fiber formation, cell contraction, and permeability. In addition, studies using recombinant apo(a) variants indicated that these effects of apo(a) are dependent on sequences within the C-terminal half of the apo(a) molecule, specifically, the strong LBS in KIV(10). In parallel experiments, the apo(a)-induced effects were completely abolished by treatment of the cells with the lysine analogue epsilon-aminocaproic acid and the Rho kinase inhibitor Y27632. Taken together, our findings indicate that the strong LBS in apo(a) KIV(10) mediates all of our observed effects of apo(a) on human umbilical vein endothelial cell barrier dysfunction. Studies are ongoing to further dissect the molecular basis of these findings.  相似文献   

5.
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.  相似文献   

6.
The endothelial adherens junction is formed by complexes of transmembrane adhesive proteins, of which beta-catenin is known to connect the junctional protein vascular endothelial (VE)-cadherin to the cytoskeleton and to play a signaling role in the regulation of junction-cytoskeleton interaction. In this study, we investigated the effect of neutrophil activation on endothelial monolayer integrity and on beta-catenin and VE-cadherin modification. Treatment of cultured bovine coronary endothelial monolayers with C5a-activated neutrophils resulted in an increase in permeability as measured by albumin clearance across the monolayer. Furthermore, large scale intercellular gap formation was observed in coincidence with the hyperpermeability response. Immunofluorescence analysis showed that beta-catenin and VE-cadherin staining changed from a uniform distribution along the membrane of control cells to a diffuse pattern for both proteins and finger-like projections for beta-catenin in neutrophil-exposed monolayers. Correlatively, there was an increase in actin stress fiber formation in treated cells. Finally, beta-catenin and VE-cadherin from neutrophil-treated endothelial cells showed a significant increase in tyrosine phosphorylation. Our results are the first to link neutrophil-mediated changes in adherens junctions with intercellular gap formation and hyperpermeability in microvascular endothelial cells. These data suggest that neutrophils may regulate endothelial barrier function through a process conferring conformational changes to beta-catenin and VE-cadherin.  相似文献   

7.
Endothelial hyperpermeability is regulated by a myosin light chain-2 (MLC2) phosphorylation-dependent contractile mechanism. Thrombin is a potent inducer of hyperpermeability of cultured monolayers of endothelial cells (ECs) via Rho kinase-mediated MLC2-phosphorylation. The aim of the present study was to investigate the effects of thrombin on in situ endothelial morphology and barrier integrity. Cytoskeletal dynamics, regions of paracellular flux, and MLC2-phosphorylation of ECs were visualized by digital three-dimensional imaging microscopy of pressurized rat kidney arterioles. Myosin phosphatase targeting subunit (MYPT1)-phosphorylation was used as a surrogate marker for Rho kinase activity. Thrombin induced the formation of F-actin filaments in ECs in situ and rounding of the ECs in the absence of obvious formation of gaps between ECs. These changes were accompanied by an increase in MLC2 phosphorylation and a decrease in barrier integrity. In vitro analysis revealed that Rho kinase activity on F-actin filaments was associated with a contractile response that enhanced opening of the barrier. Rho kinase activity was not detectable on F-actin filaments induced by histamine, an inducer of a more transient hyperpermeability response. Inhibition of the myosin phosphatase mimicked the effects of thrombin on barrier function. The thrombin-induced changes in in situ MLC2 phosphorylation and barrier function were Rho kinase dependent. These data demonstrate a direct effect of thrombin on EC morphology and barrier integrity in intact microvessels. Furthermore, they establish an important contribution of enhanced Rho kinase activity to the development of prolonged but not transient types of endothelial barrier dysfunction.  相似文献   

8.
Activation of the Rho GTPase pathway determines endothelial cell (EC) hyperpermeability after injurious stimuli. To date, feedback mechanisms of Rho down-regulation critical for barrier restoration remain poorly understood. We tested a hypothesis that Rho down-regulation and barrier recovery of agonist-stimulated ECs is mediated by the Ras family GTPase Rap1. Thrombin-induced EC permeability driven by rapid activation of the Rho GTPase pathway was followed by Src kinase–dependent phosphorylation of the Rap1-specific guanine nucleotide exchange factor (GEF) C3G, activation of Rap1, and initiation of EC barrier recovery. Knockdown experiments showed that Rap1 activation was essential for down-regulation of Rho signaling and actin stress fiber dissolution. Rap1 activation also enhanced interaction between adherens junction (AJ) proteins VE-cadherin and p120-catenin and stimulated AJ reannealing mediated by the Rap1 effector afadin. This mechanism also included Rap1-dependent membrane translocation of the Rac1-specific GEF Tiam1 and activation of Rac1-dependent peripheral cytoskeletal dynamics, leading to resealing of intercellular gaps. These data demonstrate that activation of the Rap1-afadin axis is a physiological mechanism driving restoration of barrier integrity in agonist-stimulated EC monolayers via negative-feedback regulation of Rho signaling, stimulation of actin peripheral dynamics, and reestablishment of cell–cell adhesive complexes.  相似文献   

9.
Endothelial cells exposed to shear stress realigned and elongated in the direction of flow through the coordinated remodeling of their adherens junctions and actin cytoskeleton. The elaborate networks of VE-cadherin complexes in static cultures became more uniform and compact in response to shear. In contrast, the cortical actin present in static cultures was reorganized into numerous stress fiber bundles distributed parallel to the direction of flow. Exposure to shear did not significantly alter the expression of the junctional proteins VE-cadherin, beta-catenin, and alpha-catenin, but the composition of the junctional complexes did change. We detected a marked decrease in the alpha-catenin associated with VE-cadherin complexes in endothelial monolayers subjected to shear. This loss of alpha-catenin, the protein that links beta-catenin-bound cadherin to the actin cytoskeleton, was not due to decreased quantities of beta-catenin associated with VE-cadherin. Instead, the loss of alpha-catenin from the junctional complexes coincided with the increased tyrosine phosphorylation of beta-catenin associated with VE-cadherin. The change in beta-catenin phosphorylation closely correlated with the shear-induced loss of the protein tyrosine phosphatase SHP-2 from VE-cadherin complexes. Thus, the functional interaction of alpha-catenin with VE-cadherin-bound beta-catenin is regulated by the extent of tyrosine phosphorylation of beta-catenin. This, concomitantly, is regulated by SHP-2 associated with VE-cadherin complexes.  相似文献   

10.
Cross talk between the actin cytoskeleton and the microtubule (MT) network plays a critical role in regulation of endothelial permeability. We have previously demonstrated that MT disruption by nocodazole results in increases in MLC phosphorylation, actomyosin contraction, cell retraction, and paracellular gap formation, cardinal features of endothelial barrier dysfunction (Verin AD, Birukova A, Wang P, Liu F, Becker P, Birukov K, and Garcia JG. Am J Physiol Lung Cell Mol Physiol 281: L565-L574, 2001; Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva A, Garcia JG, and Verin AD. J Cell Physiol. In press.). Although activation of PKA opposes barrier-disrupting effects of edemagenic agents on confluent EC monolayers, information about the molecular mechanisms of PKA-mediated EC barrier protection is limited. Our results suggest that MT disassembly alters neither intracellular cAMP levels nor PKA enzymatic activity; however, elevation of cAMP levels and PKA activation by either cholera toxin or forskolin dramatically attenuates the decline in transendothelial electrical resistance induced by nocodazole in human pulmonary EC. Barrier-protective effects of PKA on EC were associated with PKA-mediated inhibition of nocodazole-induced stress fiber formation, Rho activation, phosphorylation of myosin phosphatase regulatory subunit at Thr696, and decreased MLC phosphorylation. In addition, forskolin pretreatment attenuated MT disassembly induced by nocodazole. These results suggest a critical role for PKA activity in stabilization of MT cytoskeleton and provide a novel mechanism for cAMP-mediated regulation of Rho-induced actin cytoskeletal remodeling, actomyosin contraction, and EC barrier dysfunction induced by MT disassembly.  相似文献   

11.
Lymphocyte extravasation into the brain is mediated largely by the Ig superfamily molecule ICAM-1. Several lines of evidence indicate that at the tight vascular barriers of the central nervous system (CNS), endothelial cell (EC) ICAM-1 not only acts as a docking molecule for circulating lymphocytes, but is also involved in transducing signals to the EC. In this paper, we examine the signaling pathways in brain EC following Ab ligation of endothelial ICAM-1, which mimics adhesion of lymphocytes to CNS endothelia. ICAM-1 cross-linking results in a reorganization of the endothelial actin cytoskeleton to form stress fibers and activation of the small guanosine triphosphate (GTP)-binding protein Rho. ICAM-1-stimulated tyrosine phosphorylation of the actin-associated molecule cortactin and ICAM-1-mediated, Ag/IL-2-stimulated T lymphocyte migration through EC monolayers were inhibited following pretreatment of EC with cytochalasin D. Pretreatment of EC with C3 transferase, a specific inhibitor of Rho proteins, significantly inhibited the transmonolayer migration of T lymphocytes, endothelial Rho-GTP loading, and endothelial actin reorganization, without affecting either lymphocyte adhesion to EC or cortactin phosphorylation. These data show that brain vascular EC are actively involved in facilitating T lymphocyte migration through the tight blood-brain barrier of the CNS and that this process involves ICAM-1-stimulated rearrangement of the endothelial actin cytoskeleton and functional EC Rho proteins.  相似文献   

12.
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a risk factor for a variety of atherosclerotic disorders including coronary heart disease. In the current study, we report that incubation of cultured human umbilical vein or coronary artery endothelial cells with Lp(a) elicits a dramatic rearrangement of the actin cytoskeleton characterized by increased central stress fiber formation and redistribution of focal adhesions. These effects are mediated by the apolipoprotein(a) (apo(a)) component of Lp(a) since incubation of apo(a) with the cells evoked similar cytoskeletal rearrangements, while incubation with low density lipoprotein had no effect. Apo(a) also produced a time-dependent increase in transendothelial permeability. The cytoskeletal rearrangements evoked by apo(a) were abolished by C3 transferase, which inhibits Rho, and by Y-27632, an inhibitor of Rho kinase. In addition to actin cytoskeleton remodeling, apo(a) was found to cause VE-cadherin disruption and focal adhesion molecule reorganization in a Rho- and Rho kinase-dependent manner. Cell-cell contacts were found to be regulated by Rho and Rac but not Cdc42. Apo(a) caused a transient increase in the extent of myosin light chain phosphorylation. Finally apo(a) did not evoke increases in intracellular calcium levels, although the effects of apo(a) on the cytoskeleton were found to be calcium-dependent. We conclude that the apo(a) component of Lp(a) activates a Rho/Rho kinase-dependent intracellular signaling cascade that results in increased myosin light chain phosphorylation with attendant rearrangements of the actin cytoskeleton. We propose that the resultant increase in endothelial permeability caused by Lp(a) may help explain the atherosclerotic risk posed by elevated concentrations of this lipoprotein.  相似文献   

13.
Barrier dysfunction of pulmonary endothelial monolayer is associated with dramatic cytoskeletal reorganization, activation of actomyosin contractility, and gap formation. The linkage between the microtubule (MT) network and the contractile cytoskeleton has not been fully explored, however, clinical observations suggest that intravenous administration of anti-cancer drugs and MT inhibitors (such as the vinca alkaloids) can lead to the sudden development of pulmonary edema in breast cancer patients. In this study, we investigated the crosstalk between MT and actomyosin cytoskeleton and characterized specific molecular mechanisms of endothelial cells (EC) barrier dysfunction induced by MT inhibitor nocodazole (ND). Our results demonstrate that MT disassembly by ND induced rapid decreases in transendothelial electrical resistance (TER) and actin cytoskeletal remodeling, indicating EC barrier dysfunction. These effects involved ND-induced activation of Rho GTPase. Rho-mediated activation of its downstream target, Rho-kinase, induced phosphorylation of Rho-kinase effector EC MLC phosphatase (MYPT1) at Thr(696) and Thr(850) resulting in MYPT1 inactivation. Phosphatase inhibition leaded to accumulation of diphospho-MLC, which induced acto-myosin polymerization, stress fiber formation and gap formation. Inhibition of Rho-kinase by Y27632 abolished ND-induced MYPT1 phosphorylation, MLC phosphorylation, and stress fiber formation. In addition, MT preservation via the MT stabilizer paclitaxel, Rho inhibition (via C3 exotoxin, or dominant negative (DN)-Rho, or DN-Rho-kinase) attenuated ND-induced TER decreases, stress fiber formation and MLC phosphorylation. Collectively, our results demonstrate a leading role for Rho-dependent mechanisms in crosstalk between the MT and actomyosin cytoskeleton, and suggest Rho-kinase and MYPT1 as major Rho effectors mediating pulmonary EC barrier disruption in response to ND-induced MT disassembly.  相似文献   

14.
Tumor necrosis factor (TNF)-alpha is released in acute inflammatory lung syndromes linked to the extensive vascular dysfunction associated with increased permeability and endothelial cell apoptosis. TNF-alpha induced significant decreases in transcellular electrical resistance across pulmonary endothelial cell monolayers, reflecting vascular barrier dysfunction (beginning at 4 h and persisting for 48 h). TNF-alpha also triggered endothelial cell apoptosis beginning at 4 h, which was attenuated by the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone. Exploring the involvement of the actomyosin cytoskeleton in these important endothelial cell responses, we determined that TNF-alpha significantly increased myosin light chain (MLC) phosphorylation, with prominent stress fiber and paracellular gap formation, which paralleled the onset of decreases in transcellular electrical resistance and enhanced apoptosis. Reductions in MLC phosphorylation by the inhibition of either MLC kinase (ML-7, cholera toxin) or Rho kinase (Y-27632) dramatically attenuated TNF-alpha-induced stress fiber formation, indexes of apoptosis, and caspase-8 activity but not TNF-alpha-induced barrier dysfunction. These studies indicate a central role for the endothelial cell cytoskeleton in TNF-alpha-mediated apoptosis, whereas TNF-alpha-induced vascular permeability appears to evolve independently of contractile tension generation.  相似文献   

15.
Transforming growth factor-beta1 (TGF-beta1) is a cytokine critically involved in acute lung injury and endothelial cell (EC) barrier dysfunction. We have studied TGF-beta1-mediated signaling pathways and examined a role of microtubule (MT) dynamics in TGF-beta1-induced actin cytoskeletal remodeling and EC barrier dysfunction. TGF-beta1 (0.1-50 ng/ml) induced dose-dependent decrease in transendothelial electrical resistance (TER) in bovine pulmonary ECs, which was linked to increased actin stress fiber formation, myosin light chain (MLC) phosphorylation, EC retraction, and gap formation. Inhibitor of TGF-beta1 receptor kinase RI (5 microM) abolished TGF-beta1-induced TER decline, whereas inhibitor of caspase-3 zVAD (10 microM) was without effect. TGF-beta1-induced EC barrier dysfunction was linked to partial dissolution of peripheral MT meshwork and decreased levels of stable (acetylated) MT pool, whereas MT stabilization by taxol (5 microM) attenuated TGF-beta1-induced barrier dysfunction and actin remodeling. TGF-beta1 induced sustained activation of small GTPase Rho and its effector Rho-kinase; phosphorylation of myosin binding subunit of myosin specific phosphatase; MLC phosphorylation; EC contraction; and gap formation, which was abolished by inhibition of Rho and Rho-kinase, and by MT stabilization with taxol. Finally, elevation of intracellular cAMP induced by forskolin (50 microM) attenuated TGF-beta1-induced barrier dysfunction, MLC phosphorylation, and protected the MT peripheral network. These results suggest a novel role for MT dynamics in the TGF-beta1-mediated Rho regulation, EC barrier dysfunction, and actin remodeling.  相似文献   

16.
To establish the role of vascular endothelial (VE)-cadherin in the regulation of endothelial cell functions, we investigated the effect of phosphorylation of a VE-cadherin site sought to be involved in p120-catenin binding on vascular permeability and endothelial cell migration. To this end, we introduced either wild-type VE-cadherin or Y658 phosphomimetic (Y658E) or dephosphomimetic (Y658F) VE-cadherin mutant constructs into an endothelial cell line (rat fat pad endothelial cells) lacking endogenous VE-cadherin. Remarkably, neither wild-type- nor Y658E VE-cadherin was retained at cell-cell contacts because of p120-catenin preferential binding to N-cadherin, resulting in the targeting of N-cadherin to cell-cell junctions and the exclusion of VE-cadherin. However, Y658F VE-cadherin was able to bind p120-catenin and to localize at adherence junctions displacing N-cadherin. This resulted in an enhanced barrier function and a complete abrogation of Rac1 activation and lamellipodia formation, thereby inhibiting cell migration. These findings demonstrate that VE-cadherin, through the regulation of Y658 phosphorylation, competes for junctional localization with N-cadherin and controls vascular permeability and endothelial cell migration.  相似文献   

17.
In our recent studies, we defined a critical role for increased levels of myosin light chain (MLC) phosphorylation, a regulatory event in the interaction between actin and myosin in TNF-alpha-induced pulmonary endothelial cell actomyosin rearrangement and apoptosis. The Rho GTPase effector, Rho kinase is an important signaling effector governing levels of MLC phosphorylation which contributes to plasma membrane blebbing in several models of apoptosis. In this study, we directly assessed the role of Rho kinase in TNF-alpha-induced endothelial cell microfilament rearrangement and apoptosis. Inhibition of RhoA GTPase activity by the overexpression of dominant negative RhoA attenuates TNF-alpha-triggered stress fiber formation, consistent with Rho activation as a key event in TNF-alpha-induced cytoskeletal rearrangement. Furthermore, pharmacologic inhibition of Rho kinase as well as dominant negative RhoA overexpression dramatically reduced TNF-alpha-induced bovine endothelial apoptosis reflected by nucleosomal fragmentation as well as caspase 7, 3, and 8 activation. These results indicate that Rho kinase-dependent cytoskeletal rearrangement is critical for early apoptotic events, possibly in the assembly of the death-inducing signaling complex leading to initiator and effector caspase activation, and suggest a novel role for Rho GTPases in endothelial cell apoptosis.  相似文献   

18.
cAMP-mediated signaling mechanisms may destabilize or stabilize the endothelial barrier, depending on the origin of endothelial cells. Here, microvascular coronary [coronary endothelial cells (CEC)] and macrovascular aortic endothelial cell (AEC) monolayers with opposite responses to cAMP were analyzed. Macromolecule permeability, isometric force, activation state of contractile machinery [indicated by phosphorylation of regulatory myosin light chains (MLC), activity of MLC kinase, and MLC phosphatase], and dynamic changes of adhesion complex proteins (translocation of VE-cadherin and paxillin) were determined. cAMP signaling was stimulated by the adenosine receptor agonist 5'-N-(ethylcarboxamido)-adenosine (NECA), the -adrenoceptor agonist isoproterenol (Iso), or by the adenylyl cyclase activator forskolin (FSK). Permeability was increased in CEC and decreased in AEC on stimulation with NECA, Iso, or FSK. The effects could be inhibited by the PKA inhibitor Rp-8-CPT-cAMPS and imitated by the PKA activator Sp-cAMPS. Under cAMP/PKA-dependent stimulation, isometric force and MLC phosphorylation were reduced in monolayers of either cell type, due to an activation of MLC phosphatase. In CEC but not in AEC, FSK induced delocalization of VE-cadherin and paxillin from cellular adhesion complexes as indicated by cell fractionation and immunofluorescence microscopy. In conclusion, decline in contractile activation and isometric force contribute to cAMP/PKA-mediated stabilization of barrier function in AEC. In CEC, this stabilizing effect is overruled by cAMP-induced disintegration of cell adhesion structures. endothelial cell adhesion; endothelial permeability; isometric force; myosin light chain kinase; myosin light chain phosphatase  相似文献   

19.
Sphingosine 1-phosphate (S1P) is known to induce reorganization of the actin cytoskeleton through activation of the GTPase Rho. We have investigated the dynamic behavior of Rho/Rho kinase-regulated myosin light chain (MLC) phosphatase activity and MLC phosphorylation in Human Umbilical Vein Endothelial Cells (HUVEC) stimulated with S1P. Immediately (30-60 s) after S1P stimulation, MLC phosphatase activity dropped and MLC phosphorylation increased in a Rho/Rho kinase-dependent manner. Shortly thereafter (2 min), MLC phosphatase increased above baseline and MLC phosphorylation correspondingly decreased to near control values. At this time point, formation of actin ruffles and Rac activity assays indicated activation of Rac. Finally, between 5 and 15 min, MLC phosphatase dropped to a plateau below baseline. In parallel, MLC phosphorylation became constantly elevated above control values. These findings indicate that S1P is able to induce dynamic cycles of MLC phosphatase deactivation and activation. This novel feature of S1P could contribute to its chemotactic and angiogenic activity.  相似文献   

20.
We demonstrated previously that inhibition of the small GTPase Rac-1 by Clostridium sordellii lethal toxin (LT) increased the hydraulic conductivity (L(p)) of rat venular microvessels and induced gap formation in cultured myocardial endothelial cells (MyEnd). In MyEnd cells, we also demonstrated that both LT and cytochalasin D reduced cellular adhesion of vascular endothelial (VE)-cadherin-coated beads. Here we further evaluate the contribution of actin depolymerization, myosin-based contraction, and VE-cadherin linkage to the actin cytoskeleton to LT-induced permeability. The actin-depolymerizing agent cytochalasin D increased L(p) in single rat mesenteric microvessels to the same extent as LT over 80 min. However, whereas the actin-stabilizing agent jasplakinolide blunted the L(p) increase due to cytochalasin D by 78%, it had no effect on the LT response. This conforms to the hypothesis that the predominant mechanism whereby Rac-1 stabilizes the endothelial barrier in intact microvessels is separate from actin polymerization and likely at the level of the VE-cadherin linkage to the actin cytoskeleton. In intact vessels, neither inhibition of contraction (butanedione monoxime, an inhibitor of myosin ATPase) nor inhibition of Rho kinase (Y-27632) modified the response to LT, even though both inhibitors lowered resting L(p). In contrast butanedione monoxime and inhibition of myosin light chain kinase completely inhibited LT-induced intercellular gap formation and largely reduced the LT-induced permeability increase in MyEnd monolayers. These results support the hypothesis that the contractile mechanisms that contribute to the formation of large gaps between cultured endothelial cells exposed to inflammatory conditions do not significantly contribute to increased permeability in intact microvessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号