首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is activated about 30-fold by monovalent cations, the most effective being K(+), NH(4)(+), and Rb(+). Previous X-ray crystal structure analysis has demonstrated that the monovalent cation binding site is located at the interface between subunits, with ligands contributed by the carbonyl oxygens of Gly52 and Asn262 from one chain and monodentate ligation by one of the epsilon-oxygens of Glu69 from another chain [Antson, A. A., Demidkina, T. V., Gollnick, P., Dauter, Z., Von Tersch, R. L., Long, J., Berezhnoy, S. N., Phillips, R. S., Harutyunyan, E. H., and Wilson, K. S. (1993) Biochemistry 32, 4195]. We have studied the effect of mutation of Glu69 to glutamine (E69Q) and aspartate (E69D) to determine the role of Glu69 in the activation of TPL. E69Q TPL is activated by K(+), NH(4)(+), and Rb(+), with K(D) values similar to wild-type TPL, indicating that the negative charge on Glu69 is not necessary for cation binding and activation. In contrast, E69D TPL exhibits very low basal activity and only weak activation by monovalent cations, even though monovalent cations are capable of binding, indicating that the geometry of the monovalent cation binding site is critical for activation. Rapid-scanning stopped-flow kinetic studies of wild-type TPL show that the activating effect of the cation is seen in an acceleration of rates of quinonoid intermediate formation (30-50-fold) and of phenol elimination. Similar rapid-scanning stopped-flow results were obtained with E69Q TPL; however, E69D TPL shows only a 4-fold increase in the rate of quinonoid intermediate formation with K(+). Preincubation of TPL with monovalent cations is necessary to observe the rate acceleration in stopped flow kinetic experiments, suggesting that the activation of TPL by monovalent cations is a slow process. In agreement with this conclusion, a slow increase (k < 0.5 s(-)(1)) in fluorescence intensity (lambda(ex) = 420 nm, lambda(em) = 505 nm) is observed when wild-type and E69Q TPL are mixed with K(+), Rb(+), and NH(4)(+) but not Li(+) or Na(+). E69D TPL shows no change in fluorescence under these conditions. High concentrations (>100 mM) of all monovalent cations result in inhibition of wild-type TPL. This inhibition is probably due to cation binding to the ES complex to form a complex that releases pyruvate slowly.  相似文献   

2.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate with the concomitant reduction of NAD to NADH. Escherichia coli IMPDH is activated by K(+), Rb(+), NH(+)(4), and Cs(+). K(+) activation is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). This inhibition is competitive versus K(+) at high K(+) concentrations, noncompetitive versus IMP, and competitive versus NAD. Thus monovalent cation activation is linked to the NAD site. K(+) increases the rate constant for the pre-steady-state burst of NADH production, possibly by increasing the affinity of NAD. Three mutant IMPDHs have been identified which increase the value of K(m) for K(+): Asp13Ala, Asp50Ala, and Glu469Ala. In contrast to wild type, both Asp13Ala and Glu469Ala are activated by all cations tested. Thus these mutations eliminate cation selectivity. Both Asp13 and Glu469 appear to interact with the K(+) binding site identified in Chinese hamster IMPDH. Like wild-type IMPDH, K(+) activation of Asp50Ala is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). However, this inhibition is noncompetitive with respect to K(+) and competitive with respect to both IMP and NAD. Asp50 interacts with residues that form a rigid wall in the IMP site; disruption of this wall would be expected to decrease IMP binding, and the defect could propagate to the proposed K(+) site. Alternatively, this mutation could uncover a second monovalent cation binding site.  相似文献   

3.
The effects of monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4(+)) on the thermal stability of RNA tertiary structure were investigated by UV melting. We show that with the RNA used here (nucleotides 1051-1108 of Escherichia coli 23 S rRNA with four base substitutions), monovalent cations and Mg(2+) compete in stabilizing the RNA tertiary structure, and that the competition takes place between two boundaries: one where Mg(2+) concentration is zero and the other where it is maximally stabilizing ("saturating"). The pattern of competition is the same for all monovalent cations and depends on the cation's ability to displace Mg(2+) from the RNA, its ability to stabilize tertiary structure in the absence of Mg(2+), and its ability to stabilize tertiary structure at saturating Mg(2+) concentrations. The stabilizing ability of a monovalent cation depends on its unhydrated ionic radius, and at a low monovalent cation concentration and saturating Mg(2+), there is a (calculated) net release of a single monovalent cation/RNA molecule when tertiary structure is denatured. The implications are that under these conditions there is at least one binding site for monovalent cations on the RNA, the site is specifically associated with formation of stable tertiary structure, K(+) is the most effective of the tested cations, and Mg(2+) appears ineffective at this site. At high ionic strength, and in the absence of Mg(2+), stabilization of tertiary structure is still monovalent-cation specific and ionic-radius dependent, but a larger number of cations ( approximately eight) are released upon RNA tertiary structure denaturation, and NH(4)(+) appears to be the most effective cation in stabilizing tertiary structure under these conditions. In the majority of the experiments, methanol was added as a cosolvent to the buffer. Its use allowed the examination of the behavior of monovalent ions under conditions where their effects would otherwise have been too weak to be observed. Methanol stabilizes tertiary but not secondary structure of the RNA. There was no evidence that it either causes qualitative changes in cation-binding properties of the RNA or a change in the pattern of monovalent cation/Mg(2+) competition.  相似文献   

4.
Both Cs(+) and NH(4)(+) alter neuronal Cl(-) homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K(+)-Cl(-) cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive (86)Rb(+) influx as a function of external Rb(+) concentration at different fixed external cation concentrations (Na(+), Li(+), K(+), Cs(+), and NH(4)(+)). Neither Na(+) nor Li(+) affected furosemide-sensitive (86)Rb(+) influx, indicating their inability to interact at the cation translocation site of KCC2. As expected for an enzyme that accepts Rb(+) and K(+) as alternate substrates, K(+) was a competitive inhibitor of Rb(+) transport by KCC2. Like K(+), both Cs(+) and NH(4)(+) behaved as competitive inhibitors of Rb(+) transport by KCC2, indicating their potential as transport substrates. Using ion chromatography to measure unidirectional Rb(+) and Cs(+) influxes, we determined that although KCC2 was capable of transporting Cs(+), it did so with a lower apparent affinity and maximal velocity compared with Rb(+). To assess NH(4)(+) transport by KCC2, we monitored intracellular pH (pH(i)) with a pH-sensitive fluorescent dye after an NH(4)(+)-induced alkaline load. Cells expressing KCC2 protein recovered pH(i) much more rapidly than untransfected cells, indicating that KCC2 can mediate net NH(4)(+) uptake. Consistent with KCC2-mediated NH(4)(+) transport, pH(i) recovery in KCC2-expressing cells could be inhibited by furosemide (200 microM) or removal of external [Cl(-)]. Thermodynamic and kinetic considerations of KCC2 operating in alternate transport modes can explain altered neuronal Cl(-) homeostasis in the presence of Cs(+) and NH(4)(+).  相似文献   

5.
Liu W  Toney MD 《Biochemistry》2004,43(17):4998-5010
Dialkylglycine decarboxylase (DGD) is a tetrameric pyridoxal phosphate (PLP)-dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. Its activity is dependent on cations. Metal-free DGD and DGD complexes with seven monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) and three divalent cations (Mg(2+), Ca(2+), and Ba(2+)) have been studied. The catalytic rate constants for cation-bound enzyme (ck(cat) and ck(cat)/bK(AIB)) are cation-size-dependent, K(+) being the monovalent cation with the optimal size for catalytic activity. The divalent alkaline earth cations (Mg(2+), Ca(2+), and Ba(2+)) all give approximately 10-fold lower activity compared to monovalent alkali cations of similar ionic radius. The Michaelis constant for aminoisobutyrate (AIB) binding to DGD-PLP complexes with cations (bK(AIB)) varies with ionic radius. The larger cations (K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) give smaller bK(AIB) ( approximately 4 mM), while smaller cations (Li(+), Na(+)) give larger values (approximately 10 mM). Cation size and charge dependence is also found with the dissociation constant for PLP binding to DGD-cation complexes (aK(PLP)). K(+) and Rb(+) possess the optimal ionic radius, giving the lowest values of aK(PLP). The divalent alkaline earth cations give aK(PLP) values approximately 10-fold higher than alkali cations of similar ionic radius. The cation dissociation constant for DGD-PLP-AIB-cation complexes (betaK(M)z+) was determined and also shown to be cation-size-dependent, K(+) and Rb(+) yielding the lowest values. The kinetics of PLP association and dissociation from metal-free DGD and its complexes with cations (Na(+), K(+), and Ba(2+)) were analyzed. All three cations tested increase PLP association and decrease PLP dissociation rate constants. Kinetic studies of cation binding show saturation kinetics for the association reaction. The half-life for association with saturating Rb(+) is approximately 24 s, while the half-life for dissociation of Rb(+) from the DGD-PLP-AIB-Rb(+) complex is approximately 12 min.  相似文献   

6.
Ono T  Rompel A  Mino H  Chiba N 《Biophysical journal》2001,81(4):1831-1840
Effects of adding monovalent alkali metal cations to Ca(2+)-depleted photosystem (PS)II membranes on the biochemical and spectroscopic properties of the oxygen-evolving complex were studied. The Ca(2+)-dependent oxygen evolution was competitively inhibited by K(+), Rb(+), and Cs(+), the ionic radii of which are larger than the radius of Ca(2+) but not inhibited significantly by Li(+) and Na(+), the ionic radii of which are smaller than that of Ca(2+). Ca(2+)-depleted membranes without metal cation supplementation showed normal S(2) multiline electron paramagnetic resonance (EPR) signal and an S(2)Q(A)(-) thermoluminescence (TL) band with a normal peak temperature after illumination under conditions for single turnover of PSII. Membranes supplemented with Li(+) or Na(+) showed properties similar to those of the Ca(2+)-depleted membranes, except for a small difference in the TL peak temperatures. The peak temperature of the TL band of membranes supplemented with K(+), Rb(+), or Cs(+) was elevated to approximately 38 degrees C which coincided with that of Y(D)(+)Q(A)(-) TL band, and no S(2) EPR signals were detected. The K(+)-induced high-temperature TL band and the S(2)Q(A)(-) TL band were interconvertible by the addition of K(+) or Ca(2+) in the dark. Both the Ca(2+)-depleted and the K(+)-substituted membranes showed the narrow EPR signal corresponding to the S(2)Y(Z)(+) state at g = 2 by illuminating the membranes under multiple turnover conditions. These results indicate that the ionic radii of the cations occupying Ca(2+)-binding site crucially affect the properties of the manganese cluster.  相似文献   

7.
In this paper, we report on the presence of cation binding areas on bovine serum amine oxidase, where metal ions of the groups IA and IIA, such as Na(+), K(+), Cs(+), Mg(2+), and Ca(2+), bind with various affinities. We found a cation-binding area that influences the enzyme activity if occupied, so that the catalytic reaction may be altered by some physiologically relevant cations, such as Ca(2+) and K(+). This binding area appears to be localized inside the enzyme active site, because some of these cations act as competitive inhibitors when highly charged amines, such as spermine and spermidine, are used as substrates. In particular, dissociation constant values (K(d)) of 23 and 27 mM were measured for Cs(+) and Ca(2+), respectively, using, as substrate, spermine, a polyamine of plasma. An additional cation-binding area, where metal ions such as Cs(+) (K(d) congruent with 0.1 mM) and Na(+) (K(d) congruent with 54 mM) bind without affecting the enzyme activity, was found by NMR.  相似文献   

8.
The effect of monovalent cations on the thermal stability of a small model DNA hairpin has been measured by capillary electrophoresis, using an oligomer with 16 thymine residues as an unstructured control. The melting temperature of the model hairpin increases approximately linearly with the logarithm of increasing cation concentration in solutions containing Na(+), K(+), Li(+), NH(4)(+), Tris(+), tetramethylammonium (TMA(+)), or tetraethylammonium (TEA(+)) ions, is approximately independent of cation concentration in solutions containing tetrapropylammonium (TPA(+)) ions, and decreases with the logarithm of increasing cation concentration in solutions containing tetrabutylammonium (TBA(+)) ions. At constant cation concentration, the melting temperature of the DNA model hairpin decreases in the order Li(+) ~ Na(+) ~ K(+) > NH(4)(+) > TMA(+) > Tris(+) > TEA(+) > TPA(+) > TBA(+). Isothermal studies indicate that the decrease in the hairpin melting temperature with increasing cation hydrophobicity is not due to saturable, site-specific binding of the cation to the random coil conformation, but to the concomitant increase in cation size with increasing hydrophobicity. Larger cations are less effective at shielding the charged phosphate residues in B-form DNA because they cannot approach the DNA backbone as closely as smaller cations. By contrast, larger cations are relatively more effective at shielding the phosphate charges in the random coil conformation, where the phosphate-phosphate distance more closely matches cation size. Hydrophobic interactions between alkylammonium ions interacting electrostatically with the phosphate residues in the coil may amplify the effect of cation size on DNA thermal stability.  相似文献   

9.
Ba(2+), a doubly charged analogue of K(+), specifically blocks K(+) channels by virtue of electrostatic stabilization in the permeation pathway. Ba(2+) block is used here as a tool to determine the equilibrium binding affinity for various monovalent cations at specific sites in the selectivity filter of a noninactivating mutant of KcsA. At high concentrations of external K(+), the block-time distribution is double exponential, marking at least two Ba(2+) sites in the selectivity filter, in accord with a Ba(2+)-containing crystal structure of KcsA. By analyzing block as a function of extracellular K(+), we determined the equilibrium dissociation constant of K(+) and of other monovalent cations at an extracellular site, presumably S1, to arrive at a selectivity sequence for binding at this site: Rb(+) (3 μM) > Cs(+) (23 μM) > K(+) (29 μM) > NH(4)(+) (440 μM) > Na(+) and Li(+) (>1 M). This represents an unusually high selectivity for K(+) over Na(+), with |ΔΔG(0)| of at least 7 kcal mol(-1). These results fit well with other kinetic measurements of selectivity as well as with the many crystal structures of KcsA in various ionic conditions.  相似文献   

10.
Cho M  Kim Y  Han SY  Min K  Rahman MA  Shim YB  Ban C 《BMB reports》2008,41(2):126-131
The folding of aptamer immobilized on an Au electrode was successfully detected using label-free electrochemical methods. A thrombin binding DNA aptamer was used as a model system in the presence of various monovalent cations. Impedance spectra showed that the extent to which monovalent cations assist in folding of aptamer is ordered as K(+) > NH(4)(+) > Na(+) > Cs(+). Our XPS analysis also showed that K(+) and NH(4)(+) caused a conformational change of the aptamer in which it forms a stable complex with these monovalent ions. Impedance results for the interaction between aptamer and thrombin indicated that thrombin interacts more with folded aptamer than with unfolded aptamer. The EQCM technique provided a quantitative analysis of these results. In particular, the present impedance results showed that thrombin participates a folding of aptamer to some extent, and XPS analysis confirmed that thrombin stabilizes and induces the folding of aptamer.  相似文献   

11.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

12.
Pyridoxal kinase catalyzes the transfer of a phosphate group from ATP to the 5' alcohol of pyridoxine, pyridoxamine, and pyridoxal. In this work, kinetic studies were conducted to examine monovalent cation dependence of human pyridoxal kinase kinetic parameters. The results show that hPLK affinity for ATP and PL is increased manyfold in the presence of K(+) when compared to Na(+); however, the maximal activity of the Na(+) form of the enzyme is more than double the activity in the presence of K(+). Other monovalent cations, Li(+), Cs(+), and Rb(+) do not show significant activity. We have determined the crystal structure of hPLK in the unliganded form, and in complex with MgATP to 2.0 and 2.2 A resolution, respectively. Overall, the two structures show similar open conformation, and likely represent the catalytically idle state. The crystal structure of the MgATP complex also reveals Mg(2+) and Na(+) acting in tandem to anchor the ATP at the active site. Interestingly, the active site of hPLK acts as a sink to bind several molecules of MPD. The features of monovalent and divalent metal cation binding, active site structure, and vitamin B6 specificity are discussed in terms of the kinetic and structural studies, and are compared with those of the sheep and Escherichia coli enzymes.  相似文献   

13.
Apoflavodoxin from the sulfate reducing bacteria Desulfovibrio desulfuricans is a small, acidic protein with a net charge of -19 at neutral pH. Here, we show that monovalent cations in biologically relevant amounts have dramatic effects on apoflavodoxin stability. The effect is largest for Gdm(+) and decreases as a function of increased cation charge density (Gdm(+)>NH(4)(+)K(+) approximately Cs(+) approximately Na(+)>Li(+)). A linear correlation of stabilizing effects with cation hydration properties suggests an important role of dehydration in efficient cation interaction with the protein. The effects on stability are due to preferential binding of one cation to native apoflavodoxin and results in an increase in thermal midpoint of 20 degrees C and the free energy of unfolding (at 20 degrees C) increases fivefold. Tuning of biophysical properties (such as folding and ligand/cofactor binding) of acidic proteins by cation binding may be important in vivo.  相似文献   

14.
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution.  相似文献   

15.
Recently, we have shown that anions of Hofmeister series affect the enzyme activity through modulation of flexibility of its active site. The enzyme activity vs. anion position in Hofmeister series showed an unusual bell-shaped dependence. In the present work, six monovalent cations (Na(+), Gdm(+), NH(4)(+), Li(+), K(+) and Cs(+)) of Hofmeister series with chloride as a counterion have been studied in relation to activity and stability of flavoprotein NADH oxidase from Thermus thermophilus (NOX). With the exception of strongly chaotropic guanidinium cation, cations are significantly less effective in promoting the Hofmeister effect than anions mainly due to repulsive interactions of positive charges around the active site. Thermal denaturations of NOX reveal unfavorable electrostatic interaction at the protein surface that may be shielded to different extent by salts. Michaelis-Menten constants for NADH, accessibility of the active site as reflected by Stern-Volmer constants and activity of NOX at high cation concentrations (1-2 M) show bell-shaped dependences on cation position in Hofmeister series. Our analysis indicates that in the presence of kosmotropic cations the enzyme is more stable and possibly more rigid than in the presence of chaotropic cations. Molecular dynamic (MD) simulations of NOX showed that active site switches between open and closed conformations [J. Hritz, G. Zoldak, E. Sedlak, Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus, Proteins 64 (2006) 465-476]. Enzyme activity, as well as substrate binding, can be regulated by the salt mediated perturbation of the balance between open and closed forms. We propose that compensating effect of accessibility and flexibility of the enzyme active site leads to bell-shaped dependence of the investigated parameters.  相似文献   

16.
Zhou Y  MacKinnon R 《Biochemistry》2004,43(17):4978-4982
The hydrophobic cell membrane interior presents a large energy barrier for ions to permeate. Potassium channels reduce this barrier by creating a water-filled cavity at the middle of their ion conduction pore to allow ion hydration and by directing the C-terminal "end charge" of four alpha-helices toward the water-filled cavity. Here we have studied the interaction of monovalent cations with the cavity of the KcsA K(+) channel using X-ray crystallography. In these studies, Tl(+) was used as an analogue for K(+) and the total ion-stabilization energy for Tl(+) in the cavity was estimated by measuring its binding affinity. Binding affinity for the Na(+) ion was also measured, revealing a weak selectivity ( approximately 7-fold) favoring Tl(+) over Na(+). The structures of the cavity containing Na(+), K(+), Tl(+), Rb(+), and Cs(+) are compared. These results are consistent with a fairly large (more negative than -100 mV) electrostatic potential inside the cavity, and they also imply the presence of a weak nonelectrostatic component to a cation's interaction with the cavity.  相似文献   

17.
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is dependent on monovalent cations, K(+) or NH(4)(+), for high activity. We have shown previously that Glu-69, which is a ligand to the bound cation, is important in monovalent cation binding and activation [Sundararaju, B., Chen, H., Shillcutt, S., and Phillips, R. S. (2000) Biochemistry 39, 8546-8555]. Lys-256 is located in the monovalent cation binding site of TPL, where it forms a hydrogen bond with a structural water bound to the cation. This lysine residue is highly conserved in sequences of TPL and the paralogue, tryptophan indole-lyase. We have now prepared K256A, K256H, K256R, and E69D/K256R mutant TPLs to probe the role of Lys-256 in monovalent cation binding and activation. K256A and K256H TPLs have low activity (k(cat)/K(m) values of 0.01-0.1%), are not activated by monovalent cations, and do not exhibit fluorescence emission at 500 nm from the PLP cofactor. In contrast, K256R TPL has higher activity (k(cat)/K(m) about 10% of wild-type TPL), is activated by K(+), and exhibits fluorescence emission from the PLP cofactor. K256A, K256H, and K256R TPLs bind PLP somewhat weaker than wild-type TPL. E69D/K256R TPL was prepared to determine if the guanidine side chain could substitute for the monovalent cation. This mutant TPL has wild-type activity with S-Et-L-Cys or S-(o-nitrophenyl)-L-Cys but has no detectable activity with L-Tyr. E69D/K256R TPL is not activated by monovalent cations and does not show PLP fluorescence. In contrast to wild-type and other mutant TPLs, PLP binding to E69D/K256R is very slow, requiring several hours of incubation to obtain 1 mol of PLP per subunit. Thus, E69D/K256R TPL appears to have altered dynamics. All of the mutant TPLs react with inhibitors, L-Ala, L-Met, and L-Phe, to form equilibrating mixtures of external aldimine and quinonoid intermediates. Thus, Lys-256 is not the base which removes the alpha-proton during catalysis. The results show that the function of Lys-256 in TPL is in monovalent cation binding and activation.  相似文献   

18.
Lasalocid metal salts were combined with 1 : 1 lithium and 2:2 potassium, rubidium, and cesium to form complexes. The nature of the lasolocid salt complexes was studied in a solid and chloroform by FTIR spectroscopy in the middle and far IR regions. The process of the complexation of lithium was also studied by (7)Li-NMR. In chloroform a 1 : 1 complex of lasalocid and Li(+) ions was formed. Continuous absorption was observed in the far FTIR spectrum of this complex. It indicated large Li(+) polarizability, which was due to fast fluctuations of the Li(+) ions in the multiminima potentials, in the monomeric structure. In the lasalocid salt with the other monovalent cations (K(+), Rb(+), Cs(+)) 2:2 complexes were formed in which the cations showed cation polarizability, which strongly depended on the mass and the radius of the cations.  相似文献   

19.
Residue Asp-189 plays an important dual role in thrombin: it defines the primary specificity for Arg side chains and participates indirectly in the coordination of Na(+). The former role is shared by other proteases with trypsin-like specificity, whereas the latter is unique to Na(+)-activated proteases in blood coagulation and the complement system. Replacement of Asp-189 with Ala, Asn, Glu, and Ser drastically reduces the specificity toward substrates carrying Arg or Lys at P1, whereas it has little or no effect toward the hydrolysis of substrates carrying Phe at P1. These findings confirm the important role of Asp-189 in substrate recognition by trypsin-like proteases. The substitutions also affect significantly and unexpectedly the monovalent cation specificity of the enzyme. The Ala and Asn mutations abrogate monovalent cation binding, whereas the Ser and Glu mutations change the monovalent cation preference from Na(+) to the smaller cation Li(+) or to the larger cation Rb(+), respectively. The observation that a single amino acid substitution can alter the monovalent cation specificity of thrombin from Na(+) (Asp-189) to Li(+) (Ser-189) or Rb(+) (Glu-189) is unprecedented in the realm of monovalent cation-activated enzymes.  相似文献   

20.
Inhibitor and ion binding sites on the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
Munson K  Garcia R  Sachs G 《Biochemistry》2005,44(14):5267-5284
The gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface. This allows allocation of the binding site to a luminal vestibule adjacent to Cys813 enclosed by part of TM4 and the loop between TM5 and TM6. K(+) competitive imidazo-1,2alpha-pyridines also bind to the luminal surface of the E(2)-P conformation, and their binding excludes PPI reaction. This overlap of the binding sites of the two classes of inhibitors combined with the results of site-directed mutagenesis and cysteine cross-linking allowed preliminary assignment of a docking mode for these reversible compounds in a position close to Glu795 that accounts for the detailed structure/activity relationships known for these compounds. The new E(2)-P model is able to assign a possible mechanism for acid secretion by this P(2)-type ATPase. Several ion binding side chains identified in the sr Ca-ATPase by crystallography are conserved in the Na,K- and H,K-ATPases. Poised in the middle of these, the H,K-ATPase substitutes lysine in place of a serine implicated in K(+) binding in the Na,K-ATPase. Molecular models for hydronium binding to E(1) versus E(2)-P predict outward displacement of the hydronium bound between Asp824, Glu820, and Glu795 by the R-NH(3)(+) of Lys791 during the conformational transition from E(1)P and E(2)P. The site for luminal K(+) binding at low pH is proposed to be between carbonyl oxygens in the nonhelical part of the fourth membrane span and carboxyl oxygens of Glu795 and Glu820. This site of K(+) binding is predicted to destabilize hydrogen bonds between these carboxylates and the -NH(3)(+) group of Lys791, allowing the Lys791 side chain to return to its E(1) position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号