首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome-P450 phosphorylation as a functional switch   总被引:3,自引:0,他引:3  
Xenobiotic metabolizing cytochromes P450 (CYP) were shown to be phosphorylated in vitro (using purified protein kinases together with purified CYPs), in intact cells (in V79 cells after transfection of cDNAs coding for individual CYPs, in diagnostic mutants, in hepatocytes), and in whole organisms (rats). CYP phosphorylation is highly isoenzyme selective in that only some CYPs are phosphorylated. Protein kinase A (PKA) was identified as a major catalyst for the phosphorylation of CYPs. The PKA recognition motif Arg-Arg-X-Ser is present in several members of the CYP2 family, but is used by only some of them, most notably by CYP2B1/2B2 and CYP2E1. For CYP2B1 it was shown that a substantial portion but not the entire pool of CYP2B1 molecules is phosphorylated and that the phosphorylated portion is catalytically fully inactive. Phosphorylation of CYPs is a very fast process (visible at the earliest time point experimentally investigated after introduction of phosphorylation-supporting measures, which was 2.5min) and the phosphorylated protein is immediately inactive (i.e., the time curves of phosphorylation and inactivation are superimposable). Thus in contrast to the slower process controlling CYP activities by enzyme induction, CYP phosphorylation controls CYP function like a switch. The physical entity of the switch was identified by site-directed mutation as the phosphoryl acceptor Ser in the PKA recognition motif, which is Ser(138) in CYPs 2B (rat CYP2B1 and rabbit CYP2B4) and its homologous Ser(139) in CYP2E1. The function of this switch was demonstrated for the drastic changes in the control of the genotoxic metabolites of mutagenic carcinogens as well as for the control of effectiveness versus unwanted toxicity of cytostatic cancer drugs.  相似文献   

2.
We have shown that the serine/threonine protein phosphatase 2A (PP2A) associates with the Jak2 tyrosine kinase in a myeloid progenitor line. In this study, we characterized the regions of Jak2 and PP2A responsible for association and evaluated the functional consequences of association. We demonstrate that PP2A interacts with truncated forms of Jak2 containing the JH1 catalytic domain. Using GST fusion proteins, we show that the isolated JH1 and JH3 domains of Jak2 bind directly to PP2A. Jak2 contains putative PP2A binding sequences (LXXLL) in the JH1 domain (residues 1078-1082) and in the JH3 domain (residues 474-478). Mutation of the LXXLL sequence in the JH1 domain decreased PP2A binding in vitro, while mutation of the similar JH3 sequence did not affect PP2A binding. We analyzed full-length Jak2 bearing the LXXLL mutation in Cos-7 cells for association with PP2A. The JH1 mutation impaired Jak2 activity and had a modest effect on PP2A binding. Finally, we show that a mutant form of the PP2A catalytic subunit lacking a site for phosphorylation (Y307F) binds more tightly to Jak2 than wild-type PP2A, consistent with a model where phosphorylation disrupts the Jak2-PP2A interaction.  相似文献   

3.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

4.
Abstract: We have previously shown that a brain protein kinase, termed PK40, catalyzes the multiple phosphorylation of the KSP-repeat site of neurofilaments (NFs) and also can transform τ proteins into the paired helical filament-like state as found in Alzheimer's disease (AD) brains. Protein sequence analysis suggests that PK40 is a form of the extracellular signal-regulated kinase ERK2. A subpopulation of ERK2 species in soluble brain fractions can be efficiently phosphorylated and activated in cell-free systems, simply by adding Mg2+-ATP. Two phosphoisoforms of PK40erk2 are formed in this process, which have a reduced gel mobility, very much like the ERK2 form obtained in cell culture by stimulation with growth factors. One of these low-mobility forms cannot be inactivated with protein phosphatase 2A (PP2A) or with tyrosine phosphatases. The second form can be slowly inactivated by PP2A. In this case two Ser/Thr phosphates are removed at different rates during inactivation: One phosphate is very quickly removed to result in the formation of a high-mobility 39-kDa ERK2 species without consequence for activity; the other, slowly removed Ser/Thr phosphate controls the activity but has no effect on the gel mobility of ERK2. These results show that forms of ERK2 exist with properties different from the previously characterized ERK2 (p42mapk) from stimulated cell cultures. The active ERK2 forms produced in the presence of Mg2+-ATP alone could provide an explanation for the existence of constitutive ERK2-like NF phosphorylation in vivo. Excessive formation of an ERK2 species resistant to inactivation by PP2A might be relevant to the persistent pathological τ hyperphosphorylation in AD.  相似文献   

5.
Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment. Knockdown of the PP2A catalytic subunit increased basal dS6K phosphorylation and inhibited dephosphorylation induced by amino acid withdrawal. In contrast, depletion of the catalytic subunits of the other two members of the subfamily did not enhance dS6K phosphorylation. Knockdown of PP4 caused a 20% decrease in dS6K phosphorylation and knockdown of PP6 had no effect. Knockdown of the Drosophila B56-2 subunit resulted in enhanced dephosphorylation of dS6K following removal of amino acids. In contrast, knockdown of the homologs of the other PP2A regulatory subunits had no effects. Knockdown of the Drosophila homolog of the PP2A/PP4/PP6 interaction protein alpha4/Tap42 did not affect S6K phosphorylation, but did induce apoptosis. These results indicate that PP2A, but not other members of this subfamily, is likely to be a major S6K phosphatase in intact cells and is consistent with an important role for this phosphatase in the TOR pathway.  相似文献   

6.
The effect of increasing concentrations of Zn2+ (1 microM-5 mM) on protein phosphorylation was investigated in cytosol (S3) and crude synaptic plasma membrane (P2-M) fractions from rat cerebral cortex and purified calmodulin-stimulated protein kinase II (CMK II). Zn2+ was found to be a potent inhibitor of both protein kinase and protein phosphatase activities, with highly specific effects on CMK II. Only one phosphoprotein band (40 kDa in P2-M phosphorylated under basal conditions) was unaffected by addition of Zn2+. The vast majority of phosphoprotein bands in both basal and calcium/calmodulin-stimulated conditions showed a dose-dependent inhibition of phosphorylation, which varied with individual phosphoproteins. Two basal phosphoprotein bands (58 and 66 kDa in S3) showed a significant stimulation of phosphorylation at 100 microM Zn2+ with decreased stimulation at higher concentrations, which was absent by 5 mM Zn2+. A few Ca2+/calmodulin-stimulated phosphoproteins in P2-M and S3 showed biphasic behavior; inhibition at less than 100 microM Zn2+ and stimulation by millimolar concentrations of Zn2+ in the presence or absence of added Ca2+/calmodulin. The two major phosphoproteins in this group were identified as the alpha and beta subunits of CMK II. Using purified enzyme, Zn2+ was shown to have two direct effects on CMK II: an inhibition of Ca2+/calmodulin-stimulated autophosphorylation and substrate phosphorylation activity at low concentrations and the creation of a new Zn(2+)-stimulated, Ca2+/calmodulin-independent activity at concentrations of greater than 100 microM that produces a redistribution of activity biased toward autophosphorylation and an alpha subunit with an altered mobility on sodium dodecyl sulfate-containing gels.  相似文献   

7.
The regulation of protein phosphatase 2A (PP2A) and protein threonine phosphorylation by H(2)O(2) was determined in Caco-2 cell monolayer. Incubation with H(2)O(2) (20 microM) resulted in threonine phosphorylation of a cluster of proteins at the molecular mass range of 170-250 kDa. PKC activity and plasma membrane localization of several isoforms of PKC were not affected by H(2)O(2). However, H(2)O(2) reduced 80-85% of okadaic acid-sensitive protein phosphatase activity. Immunocomplex protein phosphatase assay demonstrated that H(2)O(2) reduced the activity of PP2A, but not that of PP2C or PP1. Oxidized glutathione inhibited PP2A activity in plasma membranes prepared from Caco-2 cells and the phosphatase activity of an isolated PP2A. PP2A activity was also inhibited by N-ethylmaleimide, iodoacetamide, and p-chloromercuribenzoate. Inhibition of PP2A by oxidized glutathione was reversed by reduced glutathione. Glutathione also restored the PP2A activity in plasma membranes isolated from H(2)O(2)-treated Caco-2 cell monolayer. These results indicate that PP2A activity can be regulated by glutathionylation, and that H(2)O(2) inhibits PP2A in Caco-2 cells, which may involve glutathionylation of PP2A.  相似文献   

8.
Protein phosphatases play key roles in cellular regulation and are subjected to control by protein inhibitors whose activity is in turn regulated by phosphorylation. Here we investigated the possible regulation of phosphorylation-dependent type-1 protein phosphatase (PP1) inhibitors, CPI-17, PHI-1, and KEPI, by various kinases. Protein kinases A (PKA) and G (PKG) phosphorylated CPI-17 at the inhibitory site (T38), but not PHI-1 (T57). Phosphorylated CPI-17 inhibited the activity of both the PP1 catalytic subunit (PP1c) and the myosin phosphatase holoenzyme (MPH) with IC(50) values of 1-8 nM. PKA predominantly phosphorylated a site distinct from the inhibitory T73 in KEPI, whereas PKG was ineffective. Integrin-linked kinase phosphorylated KEPI (T73) and this dramatically increased inhibition of PP1c (IC(50)=0.1 nM) and MPH (IC(50)=8 nM). These results suggest that the regulatory phosphorylation of CPI-17 and KEPI may involve distinct kinases and signaling pathways.  相似文献   

9.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

10.
11.
We have investigated the role of PI 3-kinase and mTOR in the degradation of IRS-1 induced by insulin. Inhibition of mTOR with rapamycin resulted in approximately 50% inhibition of the insulin-induced degradation of IRS-1. In contrast, inhibition of PI-3 kinase, an upstream activator of mTOR, leads to a complete block of the insulin-induced degradation. Inhibition of either PI-3 kinase or mTOR prevented the mobility shift in IRS-1 in response to insulin, a shift that is caused by Ser/Thr phosphorylation. These results indicate that insulin stimulates PI 3-kinase-mediated degradation of IRS-1 via both mTOR-dependent and -independent pathways. Platelet-derived growth factor (PDGF) stimulation leads to a lower level of degradation, but significant phosphorylation of IRS-1. Both the degradation and phosphorylation of IRS-1 in response to PDGF are completely inhibited by rapamycin, suggesting that PDGF stimulates IRS-1 degradation principally via the mTOR-dependent pathway. Inhibition of the serine/threonine phosphatase PP2A with okadaic acid also induced the phosphorylation and degradation of IRS-1. IRS-1 phosphorylation and degradation in response to okadaic acid were not inhibited by rapamycin, suggesting that the action of mTOR in the degradation of IRS-1 results from inhibition of PP2A. Consistent with this, treatment of cells with rapamycin stimulated PP2A activity. While the role of mTOR in the phosphorylation of IRS-1 appears to proceed primarily through the regulation of PP2A, we also provide evidence that the regulation of p70S6 kinase phosphorylation requires the direct activity of mTOR.  相似文献   

12.
Human liver CYP2E1 is a monotopic, endoplasmic reticulum-anchored cytochrome P450 responsible for the biotransformation of clinically relevant drugs, low molecular weight xenobiotics, carcinogens, and endogenous ketones. CYP2E1 substrate complexation converts it into a stable slow-turnover species degraded largely via autophagic lysosomal degradation. Substrate decomplexation/withdrawal results in a fast turnover CYP2E1 species, putatively generated through its futile oxidative cycling, that incurs endoplasmic reticulum-associated ubiquitin-dependent proteasomal degradation (UPD). CYP2E1 thus exhibits biphasic turnover in the mammalian liver. We now show upon heterologous expression of human CYP2E1 in Saccharomyces cerevisiae that its autophagic lysosomal degradation and UPD pathways are evolutionarily conserved, even though its potential for futile catalytic cycling is low due to its sluggish catalytic activity in yeast. This suggested that other factors (i.e. post-translational modifications or "degrons") contribute to its UPD. Indeed, in cultured human hepatocytes, CYP2E1 is detectably ubiquitinated, and this is enhanced on its mechanism-based inactivation. Studies in Ubc7p and Ubc5p genetically deficient yeast strains versus corresponding isogenic wild types identified these ubiquitin-conjugating E2 enzymes as relevant to CYP2E1 UPD. Consistent with this, in vitro functional reconstitution analyses revealed that mammalian UBC7/gp78 and UbcH5a/CHIP E2-E3 ubiquitin ligases were capable of ubiquitinating CYP2E1, a process enhanced by protein kinase (PK) A and/or PKC inclusion. Inhibition of PKA or PKC blocked intracellular CYP2E1 ubiquitination and turnover. Here, through mass spectrometric analyses, we identify some CYP2E1 phosphorylation/ubiquitination sites in spatially associated clusters. We propose that these CYP2E1 phosphorylation clusters may serve to engage each E2-E3 ubiquitination complex in vitro and intracellularly.  相似文献   

13.
Abstract: We have found that modification of rat PC12 cells with pertussis toxin resulted in an ∼50% inhibition of a protein phosphatase 2A-like phosphatase. Protein phosphatase 2A (PP2A) is a major cellular serine/threonine-specific protein phosphatase. Treatment of extracts from pertussis toxin-modified PC12 cells with either immobilized alkaline phosphatase or Ca2+ reversed this inhibition. Reactivation of the PP2A-like phosphatase in Ca2+ appears to result from the dephosphorylation of a protein by the Ca2+/calmodulin-dependent protein phosphatase calcineurin. The PP2A-like phosphatase in extracts from pertussis toxin-modified PC12 cells eluted from a Mono Q column at a higher ionic strength than did the PP2A-like phosphatase in extracts from control cells. After incubation in Ca2+, the PP2A-like phosphatase in extracts from pertussis toxin-modified cells eluted from a Mono Q column at the same ionic strength as did the PP2A-like phosphatase in extracts from control cells. These results indicate that the effect of pertussis toxin on this PP2A-like activity results from the phosphorylation of either one of the subunits of the PP2A-like phosphatase or a protein that when phosphorylated binds to and inhibits this phosphatase. Pertussis toxin modification did not result in the phosphorylation of the catalytic subunit of PP2A. Because phosphorylation regulates the activities of many enzymes and cell surface receptors, a pertussis toxin-induced decrease in PP2A activity could alter signaling pathways and other cellular processes in which G proteins are not directly involved.  相似文献   

14.
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase that carries out multiple functions. Although numerous observations suggest that PP2A plays a major role in downregulation of the mitogen-activated protein (MAP) kinase pathway, the precise mechanisms are unknown. To clarify the role of PP2A in growth factor (insulin, epidermal growth factor [EGF], and insulin-like growth factor 1 [IGF-1]) stimulation of the Ras/MAP kinase pathway, simian virus 40 small t antigen was expressed in Rat-1 fibroblasts which overexpress insulin receptors. Small t antigen is known to specifically inhibit PP2A by binding to the A PP2A regulatory subunit, interfering with the ability of PP2A to bind to its cellular substrates. Overexpressed small t protein was coimmunoprecipitated with PP2A and inhibited cellular PP2A activity but did not inhibit protein phosphatase 1 (PP1) activity. Insulin, IGF-1, and EGF stimulation also inhibited PP2A activity. Growth factor-stimulated Ras, Raf-1, MAP kinase, and mitogen-activated extracellular-signal-regulated kinase kinase (MEK) activities were elevated in small-t-antigen-expressing cells. Furthermore, Shc tyrosine phosphorylation and its association with Grb2 were also elevated in small-t-antigen-expressing cells. Expression levels of Shc, Ras, MEK, or MAP kinase and phosphorylation of insulin, EGF, and IGF-1 receptors were not altered. Interestingly, we found that PP2A associated with Shc in the basal state and dissociated in response to insulin and EGF and that this dissociation was inhibited by 65% in small-t-antigen-expressing cells. In addition, we found that PP2A associates with the phosphotyrosine-binding domain (PTB domain) of Shc and that phosphorylation of tyrosine 317 of Shc was required for PP2A-Shc dissociation. We conclude (i) that PP2A negatively regulates the Ras/MAP kinase pathway by binding to Shc, inhibiting tyrosine phosphorylation; (ii) that the Shc-PP2A association is mediated by the Shc PTB domain but the interaction is independent of phosphotyrosine binding, indicating a new molecular function for the PTB domain; (iii) that growth factor stimulation, or small-t-antigen expression, causes dissociation of the PP2A-Shc complex, facilitating Shc phosphorylation and downstream activations of the Ras/MAP kinase pathway; and (iv) that this defines a new mechanism of small-t-antigen action to promote mitogenesis.  相似文献   

15.
The activity of cholesterol 7alpha-hydroxylase (gpCYP7A1), the rate limiting enzyme in bile acid synthesis, has been postulated to be regulated by phosphorylation/dephosphorylation. This study has found that several kinase activators rapidly reduce the amount of bile acid produced by the human hepatoma cell line, HepG2, and that gpCYP7A1 from HepG2 cell extracts eluted in the phosphoprotein fraction of FeIII columns. After incubating the HepG2 cells with radioactive orthophosphate, the band identified as gpCYP7Al on immunoblots was strongly labeled. Recombinant gpCYP7A was expressed as 6xHIS fusion polypeptides and subjected to kinase assays. The locations of phosphorylation were mapped further by screening synthetic peptides against AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase, protein kinase A, and a panel of nine protein kinase C isoforms. AMPK, also known as 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase, phosphorylated cholesterol 7alpha-hydroxylase, suggesting a potential mechanism of coordination of cholesterol synthesis and degradation.  相似文献   

16.
Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.  相似文献   

17.
18.
Chk2 is a key player of the DNA damage signalling pathway. To identify new regulators of this kinase, we performed a yeast two-hybrid screen and found that Chk2 associated with the B' regulatory subunit of protein phosphatase PP2A. In vitro GST-Chk2 pulldowns demonstrated that B'gamma isoforms bound to Chk2 with the strongest apparent affinity. This was confirmed in cellulo by co-immunoprecipitation after overexpression of the respective partners in HEK293 cells. The A and C subunits of PP2A were present in the complexes, suggesting that Chk2 was associated with a functionnal PP2A. In vitro kinase assays showed that B'gamma3 was a potent Chk2 substrate. This phosphorylation increased the catalytic phosphatase activity of PP2A measured on MAP kinase-phosphorylated myelin basic protein as well as on autophosphorylated Chk2. Finally, we demonstrated that overexpressing B'gamma3 in HEK293 suppressed the phosphorylation of Chk2 induced by a genotoxic treatment, suggesting that PP2A may counteract the action of the checkpoint kinase in living cells.  相似文献   

19.
Abstract: Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286 generates Ca2+-independent activity. As an initial step toward understanding CaMKII inactivation, protein phosphatase classes (PP1, PP2A, PP2B, or PP2C) responsible for dephosphorylation of Thr286 in rat forebrain subcellular fractions were identified using phosphatase inhibitors/activators, by fractionation using ion exchange chromatography and by immunoblotting. PP2A-like enzymes account for >70% of activity toward exogenous soluble Thr286-autophosphorylated CaMKII in crude cytosol, membrane, and cytoskeletal extracts; PP1 and PP2C account for the remaining activity. CaMKII is present in particulate fractions, specifically associated with postsynaptic densities (PSDs); each protein phosphatase is also present in isolated PSDs, but only PP1 is enriched during PSD isolation. When isolated PSDs dephosphorylated exogenous soluble Thr286-autophosphorylated CaMKII, PP2A again made the major contribution. However, CaMKII endogenous to PSDs (32P autophosphorylated in the presence of Ca2+/calmodulin) was predominantly dephosphorylated by PP1. In addition, dephosphorylation of soluble and PSD-associated CaMKII in whole forebrain extracts was catalyzed predominantly by PP2A and PP1, respectively. Thus, soluble and PSD-associated forms of CaMKII appear to be dephosphorylated by distinct enzymes, suggesting that Ca2+-independent activity of CaMKII is differentially regulated by protein phosphatases in distinct subcellular compartments.  相似文献   

20.
The phosphorylation state of the tumor suppressor protein BRCA1 is tightly associated with its functions including cell cycle control and DNA repair. Protein kinases involved in the DNA damage checkpoint control, such as ATM, ATR, and hCds1/Chk2, have been shown to phosphorylate and activate BRCA1 upon DNA damage. We reported previously that protein phosphatase 1alpha (PP1alpha) interacts with and dephosphorylates hCds1/Chk2-phosphorylated BRCA1. This study demonstrates the identification of a PP1-binding motif 898KVTF901 in BRCA1. Mutation or deletion of critical residues in this PP1-binding motif substantially reduces the interaction between BRCA1 and PP1alpha. PP1alpha can also dephosphorylate ATM and ATR phosphorylation sites in BRCA1 and may serve as a general regulator for BRCA1 phosphorylation. Unlike wild-type BRCA1, expression of the PP1 non-binding mutant BRCA1 protein in BRCA1-deficient cells failed to enhance survival after DNA damage. Taken together, these results suggest that interaction with PP1alpha is important for BRCA1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号