首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Auxin transport in corn coleoptile sections was inhibited by 2,3,5-triiodobenzoic acid (TIBA) as well as by 1-N-naphthylphthalamic acid (NPA); this inhibition was effected within 1 min of application.A particulate cell fraction-presumably plasma-membrane vesicles-specifically binds NPA and properties of these binding sites were studied using 3H-NPA and a pelletting technique. The saturation kinetics of the physiological NPA effect, i.e. the inhibition of auxin transport, is similar to that of the specific in-vitro NPA binding. Half saturation of the inhibitory effect was found with about 5×10-7 M TIBA and with 10-7 M NPA. Both substances also decreased the speed of movement of auxin pulses within coleoptile sections.NPA dissociates from its binding site when the particulate cell material is centrifuged through an NPA-free cushion. The NPA that is washed from its binding site can be used in another binding test without any apparent change and is chromatographically unaltered. Therefore, the NPA binding is probably reversible and non-covalent. Inhibition of auxin transport by TIBA or NPA could also be reversed when the coleoptile sections were washed in buffer.The movement of 131I-TIBA in corn coleoptiles appears to be polar in a basipetal direction. Higher concentrations of indoleacetic acid or TIBA inhibited this polar movement, suggesting that TIBA moves in the same channels as auxin. With 3H-NPA, however, no polar transport could be detected. Together with the in-vitro binding results, these data indicate that TIBA acts directly at the auxin receptor while NPA has a different receptor site.The effect of TIBA and NPA on elongation, with or without auxin, is neglegible in comparison to their effects on auxin transport.  相似文献   

2.
An explanation is sought for the inhibition of maize root growth and gravireaction brought about by treatment with 3,5-diiodo-4-hydroxybenzoic acid (DIHB). The effects of DIHB and 2,3,5-triiodobenzoic acid (TIBA) on the uptake and efflux of [3H]-indol-3yl-acetic acid (IAA) were tested using segments prepared from the elongation zone (2 to 7 mm region) of maize (Zea mays L. cv. LG11) roots. The uptake of [3H]-IAA (21 nM) by root segments incubated in buffered solutions (pH 5.0) was measured over a 5-min time-course. No significant effect of DIHB at 100 μM was observed, whereas TIBA at 10 μM slightly stimulated the uptake of [3H]-IAA. This experiment was repeated with the addition of non-radioactive IAA (total IAA concentration 1.0 μM). Up to 3 min DIHB (100 μM) had no significant effect, but thereafter a slight stimulation of IAA net uptake was observed. Treatment with TIBA (10 μM) stimulated the accumulation of IAA in the segments. The effects of DIHB (10, 50, 100 μM) and TIBA (10 and 50 μM) on the efflux of [3H]-IAA from segments that had been pretreated in [3H]-IAA (22 nM) were then tested. Treatment with DIHB or TIBA at pH 5.0 inhibited IAA efflux; the inhibition by TIBA was more marked than that produced by DIHB. This experiment was repeated using DIHB (10, 50, 100 μM) buffered at pH 6.0, and an inhibition of IAA efflux was again observed. Both DIHB (10 μM) and TIBA (10 μM) inhibited the binding of [3H]-NPA to a 5000–48000 g membrane fraction prepared from whole maize roots. The effects of the two substances were similar: 40% inhibition of specific binding by DIHB and 41% inhibition by TIBA. This indicates that DIHB, like TIBA, binds to the N-1-naphthyl-phthalamic acid-sensitive carrier for IAA efflux. It is concluded that DIHB, like TIBA, inhibits IAA transport at the level of efflux. The similarity between DIHB and TIBA as regards chemical structure and their inhibitory effects on IAA efflux and NPA binding strongly suggest that they act on the same carrier for IAA efflux across the plasmalemma.  相似文献   

3.
Summary The application of 2,3,5-triiodobenzoic acid (TIBA, 10 mg·g-1 in lanolin) to the stem of intact pea seedlings (Pisum sativum L.) inhibited the basipetal transport of 14C from indoleacetic acid-1-14C (IAA-1-14C) applied to the apical bud, but not the transport of 14C in the phloem following the application of IAA-1-14C or sucrose-14C to mature foliage leaves. It was concluded that fundamentally different mechanisms of auxin transport operate in these two pathways.When TIBA was applied at the same time as, or 3.0 h after, the application of IAA-1-14C to the apical bud, 14C accumulated in the TIBA-treated and higher internodes; when TIBA was applied 24.0 h before the IAA-1-14C, transport in the stem above the TIBA-treated internode was considerably reduced. TIBA treatments did not consistently influence the total recovery of 14C, or the conversion of free IAA to indoleaspartic acid (IAAsp). These results are discussed in relation to the possible mechanism by which TIBA inhibits auxin transport,.Attention is drawn to the need for more detailed studies of the role of the phloem in the transport of endogenous auxin in the intact plant.Abbreviations TIBA 2,3,5-triiodobenzoic acid - IAAsp indoleaspartic acid  相似文献   

4.
The relationship between the variation in polar auxin transport (PAT) and elongating growth in etiolated Lupinus albus hypocotyls was investigated. Parameters of auxin transport, such as the amount transported, intensity of the transport and sensitivity to 1-N-naphthylphthalamic acid (NPA) inhibition were measured in isolated sections from different sites (apical, middle and basal) along the hypocotyls in seedlings of different ages. Auxin transport was studied by applying radioactive indole-3-acetic acid (IAA) to upright and inverted sections. Basipetal transport was much higher than acropetal and very sensitive to NPA inhibition, which indicates that transport is polarized. Polarity was expressed as the NPA-induced inhibition and the basipetal/acropetal ratio. As a rule, both the amount of IAA transported and the polarity varied with the age of the seedlings, with values increasing from 3 to 5d and then decreasing. Both parameters were higher in apical (where most growth is localized) than in middle and basal regions, although this longitudinal gradient tended to disappear with aging as hypocotyl growth slowed and finally ceased. The application of NPA did not modify hypocotyl elongation in 5-d-old intact seedlings. Derooting of the seedlings drastically reduced elongation in the control, while NPA partially restored the growth, which suggests that NPA induces an increase in auxin in the elongation region. These results suggest that a basipetally decreasing gradient in PAT along the hypocotyl, which changes with age, may be responsible for auxin distribution pattern controlling growth.  相似文献   

5.
Cotyledon explants of ginseng (Panax ginseng C.A. Meyer) zygotic embryos produced somatic embryos at a high rate (68%) on medium without any growth regulators. Under this culture condition, apparent polar somatic embryogenesis occurred near the basal-excised portion of the cotyledons. When the cotyledon explants were cultured on medium containing 2,3,5-triiodobenzoic acid (TIBA), an auxin polar-transport inhibitor, the frequency of somatic embryo formation markedly decreased and was completely inhibited on medium containing 20 μM TIBA. On medium containing 5–10 μM, somatic embryos developed sporadically on the surface of the cotyledons and had a normal embryo axis but jar-shaped cotyledons. Embryos with jar-shaped cotyledons were also observed to occur at a high frequency when the early globular embryos formed on hormone-free medium were transferred to medium containing 20 μM TIBA. From these results, it was deduced that endogenous auxin in the cotyledon explants plays an important role in the induction of somatic embryos and that the cotyledon development in somatic embryos is also related to the polar transport of endogenous auxin. Received: 11 October 1996 / Revised version received: 8 January 1997 / Accepted: 26 January 1997  相似文献   

6.
7.
S. Sawhney  K. L. Toky  K. K. Nanda 《Planta》1970,95(3):277-280
Summary Floral buds were initiated in Impatiens balsamina plants treated with 2,3,5-triiodobenzoic acid (TIBA) and kept under non-inductive 16- and 24-hr photoperiods, although much later than under inductive 8-hr photoperiods. TIBA did not affect extension growth to any appreciable extent but decreased the number of nodes on the main shoot under 8-hr and increased it under 16- and 24-hr photoperiods. Its effect on the development of lateral buds varied with photoperiod. TIBA-induced flowering resembles gibberellin-induced one, but its mechanism is not clear.  相似文献   

8.
Deformities of leaves induced by 2,3,5-triiodobenzoic acid (TIBA) may be helpful in elucidating certain plant growth correlations. The different behaviour of long and short shoots as regards apical dominance may be tested with this substance. Shoots growing out through ring fasciations first form leaves lacking the teeth and marginal primordia corresponding to bud scales. Are fasciations facilitate correlative studies on anisophylly. Sylleptic branching is cleared by additional fasciations provoked by the cytokinin supply. The effect of gibberellin which decreases these deformities corresponds to the correlative influence of roots. The TIBA induced modification of aerial roots on internodes treated with naphthalenacetic acid reveals the importance of polarity and periodicity in the shoot development.  相似文献   

9.
The ability of 2,3,5-triiodobenzoic acid (TIBA) to alter ion absorption, respiration, carbon metabolism, and the permeability of the cell membranes of excised barley roots has been examined. Roots pretreated in either H2O, KCl, or TIBA followed by treatment in KCl, TIBA, or KCl and TIBA demonstrated that inhibition of ion uptake due to TIBA was reversible. These studies also suggest that ions already accumulated within the vacuole remain sequestered after the addition of TIBA, whereas cytoplasmic ions leak out into the external medium. A 20-minute lag period was present prior to the onset of inhibition of O2 consumption by TIBA. A b-type cytochrome from corn that is apparently associated with the plasmalemma and possibly involved in respiration or ion uptake, or both, was unaffected by TIBA. The addition of TIBA to treatment solutions resulted in the synthesis and accumulation of ethanol. Analysis of organic acids showed that only the malate concentration was affected by treatment with TIBA. A reduction of 26% was noted for malate in the presence of 2 micromolar TIBA. These combined results suggest that the inhibitory action of TIBA in barley roots involves an alteration of mitochondrial respiration and not a direct depolarization of the plasmalemma.  相似文献   

10.
We have tested the acid-responsiveness of hollow cylinders, peeled segments, and cores of stelar tissue of hypocotyls of light-grown lupin seedlings ( Lupinus angustifolius L. cv. New Zealand Bitter Blue), to determine how differential responsiveness of individual tissues to acid might govern the response of the intact hypocotyl. Hollow cylinders of cortex with the outer cell layers intact were less responsive to acid than was the cortex alone, which elongated strongly at pH 5. The stelar tissues were acid-responsive (pH 5), but only if the cell layer surrounding the stele (the starch sheath) was disrupted. We conclude that all tissues were acid-responsive, with the cortex alone most responsive, and the outer cell layers least responsive. We suggest that acid-induced elongation of intact segments may be controlled by the response of the outer cell layers.  相似文献   

11.
M. Sabater  F. Sabater 《Planta》1986,167(1):76-80
The pH-driven accumulation of [3H]indolyl-3-acetic acid (IAA) has been found to occur in membrane vesicles of lupin (Lupinus albus L.) hypocotyls. Most of this association of auxin with membranes is very sensitive to osmotic shock, high concentrations of permeable weak acids, incubation at 20° C for 20 min and to some ionophores. Long incubation times also depress the ability to accumulate radioactive IAA but this ability can be partially restored by a treatment that presumably reconstitutes the pH gradient across the membranes. Two specific inhibitors of auxin transport, N-1-naphtylphthalamic acid and 2,3,5-triiodobenzoic acid, stimulate net IAA uptake with an optimum at about 10-6 M (pH 5.0). At least two auxin carriers appear to be present in the lupin membrane vesicles. An uptake carrier seems to be saturated at 10-7 M IAA in the presence of N-1-naphtylphthalamic acid, but higher IAA concentrations are needed to saturate an efflux carrier. The uptake carrier also shows a high affinity for IAA and 2,4-dichlorophenoxyacetic acid and a low affinity for 1-naphthylacetic acid.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indolyl-3-acetic acid - NAA naphthalene-1-acetic acid - NIG nigeriein - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - VAL valinomycin  相似文献   

12.
13.
Dekapitované klíění rostliny lnu a hrachu, nat?ené pastou s trijodbenzoovou kyselinou bud nad dělohami nebo pod nimi, jeví zvlá?tě na epikotylních pahýlech rozdílné morfogenetické změny v souvislosti, s rozdílnými korela?ními vlivy jejich epigeických, resp. hypogeických děloh, je? primárně rozhodují o rozdílné dominanci jejich pupenových základ?. V nejraněj?ím období klí?ení lze prvního internodia lnu, oby?ejně velmi krátkého, a ?apík? děloh hrachu u?ít k d?kazu antagonismu mezi kyselinou trijodbenzoovou a indolyloctovou. První internodium lnu se prodlou?ilo p?sobením trijodbenzoové kyseliny na semena, i kdy? zrála na rostlině, a ?apíky děloh hrachu, zadr?ené v r?stu má?ením semen v roztoku kyseliny trijodbenzoové, se zvět?ily p?sobením kyseliny indolyloctové zvněj?ku. Tato kyselina naopak ru?í morfogenetické ú?inky trijodbenzoové kyseliny na semena lnu.  相似文献   

14.
The involvement of polar auxin transport (PAT) on the growth of light-grown seedlings and rooting is generally accepted, while the role of auxin and PAT on the growth of dark-grown seedlings is subject to controversy. To further investigate this question, we have firstly studied the influence of NPA, a known inhibitor of PAT, on the rooting and growth of etiolated Lupinus albus hypocotyls. Rooting was inhibited when the basal ends of de-rooted seedlings were immersed in 100 micro m NPA but was partially restored after immersion in NPA + auxin. However, NPA applied to de-rooted seedlings or the roots of intact seedlings did not inhibit hypocotyl growth. It was taken up and distributed along the organ, and actually inhibited the basipetal transport of ((3)H)-IAA applied to isolated hypocotyl sections. Since the apex is the presumed auxin source for hypocotyl growth and rooting, and the epidermis is considered the limiting factor in auxin-induced growth, the basipetal and lateral auxin movement (LAM) after application of ((3)H)-IAA to decapitated seedlings were studied, in an attempt to evaluate the role of PAT and LAM in the provision of auxin to competent cells for growth and rooting. Local application of ((3)H)-IAA to the stele led to the basipetal transport of auxin in this tissue, but the process was drastically reduced when roots were immersed in NPA since no radioactivity was detected below the apical elongation region of the hypocotyl. LAM from the stele to the cortex and the epidermis occurred during basipetal transport, since radioactivity in these tissues increased as transport time progressed. Radioactivity on a per FW basis in the epidermis was 2-4 times higher than in the cortex, which suggests that epidermal cells acted as a sink for LAM. NPA did not inhibit LAM along the elongation region. These results suggest that while PAT was essential for rooting, LAM from the PAT pathway to the auxin-sensitive epidermal cells could play a key role in supplying auxin for hypocotyl elongation in etiolated lupin seedlings.  相似文献   

15.
The longitudinal distribution of unaltered radioactive indole-3-acetic acid (IAA), after application of [5-3H]-IAA to decapitated etiolated lupin hypocotyls. exhibited a wave-like pattern similar to that obtained with endogenous IAA. Waves of radioactive IAA were localizated both in the elongation zone and in the non-growing basal region of the hypocotyl. These IAA waves were transient because of basipetal polar transport and metabolism of IAA.
The level of endogenous IAA in different zones of the hypocotyl varied with age, following a wave-like pattern. During the elongation period of each zone, IAA was parallel to the bell-shaped curve of the growth rate. In addition, a role in secondary cell wall deposition is suggested for the other IAA wave that appeared after the cell elongation period, since an electron microscopic morphometric analysis of the cell wall showed that the cell wall thickness increased once the cell elongation ceased.
As the oscillation of endogenous IAA level occured in both space (distribution along the hypocotyl) and time (variation with age), it is suggested that the level of IAA really depended on the growth status of the cells. The response of the cells to the positional information submitted by the auxin waves as regards the growth status of the cell is discussed.  相似文献   

16.
A comparison between the effects of DIHB and TIBA on growth and gravireaction of 15 mm primary maize ( Zea mays L. cv. LG 11) roots is presented. Intact roots were pretreated in the dark for 1 h with buffered solutions (pH 5.0 or 6.0) containing DIHB (10, 50, 100 μ M ). The plantlets were then maintained either vertically or horizontally in the dark or the light, and growth and gravireaction were recorded using a macrophotographic technique. Pretreatment with DIHB slightly inhibited growth and delayed gravireaction. These effects were most marked with DIHB at 100 μ M and were enhanced when DIHB was applied at pH 5.0. Similar effects were observed in roots pretreated with TIBA, but at a lower concentration (1 μ M ). The similarities between DIHB and TIBA as regards both chemical structure and the inhibition of gravireaction and growth, lead us to suggest that a major mode of action of DIHB, like TIBA, is the inhibition of indol-3yl-acetic acid transport.  相似文献   

17.
The possible implication of ethylene on the growth regulation of etiolated lupin hypocotyls was investigated. Excised hypocotyl sections from actively growing seedlings produced ethylene at a rate of 3 nmol h-1 g-1 min-1. The rate of ethylene production was increased about 7 times when sections were treated with 10 mM 1-aminocyclopropane-1-carboxylic acid (ACC). Measurement of endogenous ACC showed that 95 % of total ACC (64.2 nmol g-1 min-1) corresponded to conjugated ACC. Treatments to intact seedlings with the ethylene precursor ACC, and the ethylene generating compound, 2-chloroethyl phosphonic acid (ethephon) during the cell elongation phase of the hypocotyl (from 7 to 21 dage), modified the cell growth of the organ. ACC (1 or 5 mM) or low concentrations of ethephon (0.66 mM) produced a transient decrease in the growth rate without modifying the final length of the hypocotyls. Higher concentrations of ethephon reduced the final length; the younger the seedlings were, the greater the reduction. Simultaneously to inhibition of cell elongation, ethephon produced stimulation of the radial expansion of cells in pith and cortex. The growth inhibition period, which lasted for 2 days after the treatments, was followed by another period in which the growth rate of treated plants surpassed that of the control. In both cases differences were observed along the hypocotyls due to the different growth status of the cells. It is suggested that the sensitivity to ethylene and the metabolism of ethylene depend on the growth status of the cells.  相似文献   

18.
The relationship between the amount of indole-3-acetic acid transported (IAA transport) through the second node of 7-day-old pea seedlings and the degree of inhibition of axillary bud outgrowth at the same node was studied. For both the endogenous apical IAA source (leaves of apical bud) and the exogenous one (lanolin paste containing 0.25–1.0 mg mL–1 IAA) the slope of linear dependence between inhibition and IAA transport was similar. However, the same IAA transport induced different inhibitions, which were higher for the endogenous source. Moreover, the apical bud induced higher inhibition at the same level of IAA transport when the 4th leaf was present than when it was absent. Apparently, the source of IAA also may regulate the inhibitory power of IAA transported from it. IAA transport appears to consists of active and slightly active one moving along different pathways.Abbreviations a and b coefficients of linear regression of the type y = a+bx; - confidence level of t-test - ELISA enzyme linked immunosorbent assay - GR1,2 e/d growth rate of the lateral bud of experimental/decapitated (control) pea plants at the first and second days after treatment or decapitation - I degree of inhibition of lateral bud outgrowth - IAA indole-3-acetic acid - L1,2,3 the lengths of lateral bud at 1, 2 or 3rd day after treatment or decapitation of pea plants - n data number - r correlation coefficient - T amount of IAA transported through the second node of pea plant for 3 hours - TIBA 2, 3, 5-triiodobenzoic acid - t-test statistical test used here to compare slopes of linear regressions (y = a+bx) calculated as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaiaabc% cacaqG9aGaaeiiaiaadkgadaWgaaWcbaGaaGymaaqabaGccaqGGaGa% aeylaiaabccacaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaeiiaiaab+% cacaqGGaWaaOaaaeaacaqGBbaaleqaaOGaaeikaiaabohacaqGLbGa% aeiiaiaadkgadaWgaaWcbaGaaGymaaqabaGccaqGPaWaaWbaaSqabe% aacaqGYaaaaOGaaeiiaiaabUcacaqGGaGaaeikaiaabohacaqGLbGa% aeiiaiaadkgadaWgaaWcbaGaaGOmaaqabaGccaqGPaWaaWbaaSqabe% aacaqGYaaaaOGaaeyxaiaab6caaaa!524A!\[{\text{t = }}b_1 {\text{ - }}b_2 {\text{ / }}\sqrt {\text{[}} {\text{(se }}b_1 {\text{)}}^{\text{2}} {\text{ + (se }}b_2 {\text{)}}^{\text{2}} {\text{]}}{\text{.}}\]  相似文献   

19.
The addition of 1 micromolar 2,3,5-triiodobenzoic acid (TIBA) to solutions containing KCl resulted in the inhibition of K and Cl uptake in excised barley roots. The effectiveness of TIBA as an inhibitor increased as the pH of the treatment solution decreased and approached the pKa of TIBA. A lag period of approximately 20 minutes existed prior to the onset of TIBA induced inhibition of ion uptake. Respiratory activity was also inhibited by TIBA. The data suggest that in this material, TIBA functions by entering the cytoplasm and inhibiting metabolism. Comparisons made on the effect of added Ca, showed that at pH 5.7 and higher, Ca had no effect on ion uptake whereas at lower pH values the presence of Ca enhanced uptake by offsetting the deleterious effects of H+.  相似文献   

20.
The distribution of basic soluble isoperoxidases along the growth gradient of lupin hypocotyl was studied in order to establish the role of these isoenzymes in controlling polarly transported indole-3yl-acetic acid (IAA) levels. The observation that the levels of basic isoperoxidases, which diminish from the young (vascular differentiating) to the older (vascular differentiated) tissues, are related with previously reported IAA oxidation rates in decapitated plants, suggests that these isoenzymes can play a role in the oxidation of IAA during polar transport. The fact that the level of basic isoperoxidases is controlled by IAA in hypocotyl sections harvested from different growth zones is in accordance with the previously described adaptative activation of basic isoperoxidases to IAA content. This adaptative activation of basic isoperoxidases might constitute the basic characteristic of a system of subcellular oscillators, coupled at the cellular level, necessary to generate the supracellular auxinwave associated with auxin transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号