首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DinG protein from Escherichia coli is a structure-specific helicase   总被引:1,自引:0,他引:1  
The Escherichia coli DinG protein is a DNA damage-inducible member of the helicase superfamily 2. Using a panel of synthetic substrates, we have systematically investigated structural requirements for DNA unwinding by DinG. We have found that the helicase does not unwind blunt-ended DNAs or substrates with 3'-ss tails. On the other hand, the 5'-ss tails of 11-15 nucleotides are sufficient to initiate DNA duplex unwinding; bifurcated substrates further facilitate helicase activity. DinG is active on 5'-flap structures; however, it is unable to unwind 3'-flaps. Similarly to the homologous Saccharomyces cerevisiae Rad3 helicase, DinG unwinds DNA.RNA duplexes. DinG is active on synthetic D-loops and R-loops. The ability of the enzyme to unwind D-loops formed on superhelical plasmid DNA by the E. coli recombinase RecA suggests that D-loops may be natural substrates for DinG. Although the availability of 5'-ssDNA tails is a strict requirement for duplex unwinding by DinG, the unwinding of D-loops can be initiated on substrates without any ss tails. Since DinG is DNA damage-inducible and is active on D-loops and forked structures, which mimic intermediates of homologous recombination and replication, we conclude that this helicase may be involved in recombinational DNA repair and the resumption of replication after DNA damage.  相似文献   

2.
DinG (damage inducible gene G) is a bacterial superfamily 2 helicase with 5′→3′ polarity. DinG is related to the XPD (xeroderma pigmentosum complementation group D) helicase family, and they have in common an FeS (iron–sulfur)-binding domain that is essential for the helicase activity. In the bacilli and clostridia, the DinG helicase has become fused with an N-terminal domain that is predicted to be an exonuclease. In the present paper we show that the DinG protein from Staphylococcus aureus lacks an FeS domain and is not a DNA helicase, although it retains DNA-dependent ATP hydrolysis activity. Instead, the enzyme is an active 3′→5′ exonuclease acting on single-stranded DNA and RNA substrates. The nuclease activity can be modulated by mutation of the ATP-binding cleft of the helicase domain, and is inhibited by ATP or ADP, suggesting a modified role for the inactive helicase domain in the control of the nuclease activity. By degrading rather than displacing RNA or DNA strands, the S. aureus DinG nuclease may accomplish the same function as the canonical DinG helicase.  相似文献   

3.
Purification and characterization of Thermus thermophilus UvrD   总被引:1,自引:0,他引:1  
The DNA helicase UvrD (helicase II) protein plays an important role in nucleotide excision repair, mismatch repair, rolling circular plasmid replication, and in DNA replication. A homologue of the Escherichia coli uvrD gene was previously identified in Thermus thermophilus; however, to date, a UvrD helicase has not been purified and characterized from a thermophile. Here we report the purification and characterization of a UvrD protein from Thermus thermophilus HB8. The purified UvrD has a temperature range from 10 degrees to >65 degrees C, with an optimum of 50 degrees C, within the temperature limits of the assay. The enzyme had a requirement for divalent metal ions and nucleoside triphosphates which related to enzyme activity in the order ATP > dATP > dGTP > GTP > CTP > dCTP > UTP. A simple real-time helicase assay was developed that should facilitate detailed kinetic studies of the enzyme. Evaluation of helicase substrates using this assay showed that the enzyme was highly active on a double-stranded DNA with 5' recessed ends in comparison with substrates with 3' recessed or blunt ends, and supports enzyme translocation in a 3'-5' direction relative to the strand bound by the enzyme.  相似文献   

4.
The Escherichia coli RecQ DNA helicase participates in a pathway of DNA repair that operates in parallel to the recombination pathway driven by the multisubunit helicase-nuclease machine RecBCD. The model mycobacterium Mycobacterium smegmatis executes homologous recombination in the absence of its helicase-nuclease machine AdnAB, though it lacks a homolog of E. coli RecQ. Here, we identify and characterize M. smegmatis RqlH, a RecQ-like helicase with a distinctive domain structure. The 691-amino acid RqlH polypeptide consists of a RecQ-like ATPase domain (amino acids 1-346) and tetracysteine zinc-binding domain (amino acids 435-499), separated by an RqlH-specific linker. RqlH lacks the C-terminal HRDC domain found in E. coli RecQ. Rather, the RqlH C-domain resembles bacterial ComF proteins and includes a phosphoribosyltransferase-like module. We show that RqlH is a DNA-dependent ATPase/dATPase that translocates 3'-5' on single-stranded DNA and has 3'-5' helicase activity. These functions inhere to RqlH-(1-505), a monomeric motor unit comprising the ATPase, linker and zinc-binding domains. RqlH homologs are distributed widely among bacterial taxa. The mycobacteria that encode RqlH lack a classical RecQ, though many other Actinobacteria have both RqlH and RecQ. Whereas E. coli K12 encodes RecQ but lacks a homolog of RqlH, other strains of E. coli have both RqlH and RecQ.  相似文献   

5.
PcrA from Bacillus stearothermophilus is a DNA helicase for which, despite the availability of a crystal structure, there is very little biochemical information. We show that the enzyme has a broad nucleotide specificity, even being able to hydrolyse ethenonucleotides, and is able to couple the hydrolysis to unwinding of DNA substrates. In common with the Escherichia coli helicases Rep and UvrD, PcrA is a 3'-5' helicase but at high protein concentrations it can also displace a substrate with a 5' tail. However, in contrast to Rep and UvrD, we do not see any evidence for dimerisation of the protein even in the presence of DNA. The enzyme shows a specificity for the DNA substrate in gel mobility assays, with the preferred substrate being one with both single and double stranded regions of DNA. We propose that these data, together with existing structural evidence, support an inchworm rather than a rolling model for 3'-5' helicase activity.  相似文献   

6.
RecBCD has two conflicting roles in Escherichia coli. (i) As ExoV, it is a potent double-stranded (ds)DNA exonuclease that destroys linear DNA produced by restriction of foreign DNA. (ii) As a recombinase, it promotes repair of dsDNA breaks and genetic recombination in the vicinity of chi recombination hot-spots. These paradoxical roles are accommodated by chi-dependent attenuation of RecBCD exonuclease activity and concomitant conversion of the enzyme to a recombinase. To challenge the proposal that chi converts RecBCD from a destructive exonuclease to a recombinogenic helicase, we mutated the nuclease catalytic centre of RecB and tested the resulting mutants for genetic recombination and DNA repair in vivo. We predicted that, if nuclease activity inhibits recombination and helicase activity is sufficient for recombination, the mutants would be constitutive recombinases, as has been seen in recD null mutants. Conversely, if nuclease activity is required, the mutants would be recombination deficient. Our results indicate that 5' --> 3' exonuclease activity is essential for recombination by RecBCD at chi recombination hot-spots and at dsDNA ends in recD mutants. In the absence of RecB-dependent nuclease function, recombination becomes entirely dependent on the 5' --> 3' single-stranded (ss)DNA exonuclease activity of RecJ and the helicase activity of RecBC(D).  相似文献   

7.
C L Tai  W K Chi  D S Chen    L H Hwang 《Journal of virology》1996,70(12):8477-8484
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.  相似文献   

8.
9.
10.
A DNA helicase, dependent on the multisubunit human single-stranded DNA binding protein (HSSB), was isolated from HeLa cells. At low levels of helicase, only the multisubunit SSBs, HSSB and yeast SSB, stimulated DNA helicase activity. At high levels of the helicase Escherichia coli SSB partially substituted for HSSB whereas other SSBs such as T4 gene 32 and adenovirus DNA binding protein did not stimulate the enzyme activity. Maximal activation of helicase activity occurred in the presence of one molecule of HSSB for every 20 nucleotides of single-stranded DNA. The addition of E. coli SSB significantly lowered the amount of HSSB required for strand displacement, suggesting that the HSSB plays at least two roles in the activation of the helicase. One is to bind single-stranded DNA, thereby preventing sequestration of the helicase, the other involves the interaction of the HSSB with the helicase. Monoclonal antibodies that interact with the 70- and 34-kDa subunits of HSSB inhibited its stimulation of the helicase activity. The DNA helicase acted catalytically in displacing duplex DNA and translocated in the 3' to 5' direction. The helicase displaced fragments from both ends of a DNA substrate that contained duplex region at both termini, but the 3' to 5' fragment was displaced 20 times faster than the 5' to 3' fragment. Since this helicase also displaced fully duplex DNA, the release of the 5' to 3' fragment may have occurred by entry of the helicase through the duplex end in a 3' to 5' direction.  相似文献   

11.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.  相似文献   

12.
Electron microscopy was used to characterize the DNA-unwinding reaction catalysed by Escherichia coli DNA helicase I. Linear DNA with 5'-protruding strands as well as single-stranded gaps was incubated, under unwinding assay conditions, with the helicase. E. coli single-stranded-DNA-binding protein (SSB) was added to order the denatured DNA. Up to 70% of the sites of SSB-complexed DNA were observed as forks. The position of the strand-separating enzyme was indicated by a gap in the complex between fork and SSB on that arm which initially provided the binding site. The complex between DNA and helicase varied in length although in all cases it was long enough to comprise several helicase I molecules. A mutant helicase I (helicase I del29) which, unlike the wild-type enzyme, fails to show cooperative DNA-binding behaviour was found to prevent an abnormally short stretch of DNA near the fork from binding SSB. Apparently, one or very few helicase molecules would be sufficient for the opening of a DNA duplex although, typically, the fork is shifted by a tract of helicase I molecules. SSB displaces helicase I from single-stranded DNA but fails to do so from a fork or a single-strand/double-strand junction. The difference is consistent with the observation that SSB does not inhibit the unwinding reaction despite its rapid association with the separated strands. Helicase I unwinds in the 5'-3' direction of the bound strand. Observations so far indicate that the enzyme exploits the single strand at the initial DNA-binding site for orienting its action, and not the complementary, completely base-paired strand.  相似文献   

13.
The direction of the DNA-unwinding reaction catalysed by Escherichia coli DNA helicase II was studied using gapped linear DNA molecules with short duplex ends as substrate. The results suggest that DNA helicase II unwinds with 3'-5' polarity relative to the single strand of the DNA partial duplex. At high enzyme DNA ratio the enzyme also unwinds the duplex connected to the 3' end of the single strand and, as further studies show, fully duplex linear DNA. The fraction of DNA unwound decreases as the length of the duplex substrate increases. The preference of DNA helicase II for a short duplex can obscure the fact that the typical substrate is duplex connected to the 5' end of a single strand.  相似文献   

14.
Removal of interstrand cross-linked from DNA was examined in Escherichia coli permeabilized by treatment with toluene. Under these conditions, the reaction requires ATP and Mg2+, and the mechanism appears to be similar to that occurring in whole cells. Under optimum conditions, the rate constant was 0.06 min-1. Genetical, physical, and biochemical analysis of the repair process suggest the following mechanism. In an ATP-dependent reaction, the uvrA and uvrB gene products cleave a phosphodiester bond on the 5' side of one arm of the cross-link, producing a 3'-OH terminus. Subsequently, DNA polymerase I (5'-3' exonuclease activity) makes a second strand cut on the 3' side of the cross-link in the same DNA strand, completing removal of the covalent link between complementary strands. The second reaction did not occur in a uvrD- strain, which had normal levels of DNA polymerizing activity. The uvrD gene may regulate the specificity or activity of the 5'-3' exonuclease of DNA polymerase I in vivo.  相似文献   

15.
A previously unreported single-stranded DNA-dependent nucleoside 5'-triphosphatase with DNA unwinding activity has been purified from extracts of Escherichia coli lacking the F factor. Fractions of the purified enzyme contain a major polypeptide of Mr = 75,000 which contains the active site(s) for both ATP hydrolysis and helicase activity. This is consistent with the results of gel filtration chromatography which indicate a native molecular mass of 75 kDa. The 75-kDa helicase has a preference for ATP (dATP) as a substrate in the hydrolysis reaction and requires the presence of a single-stranded DNA cofactor. The helicase reaction catalyzed by the enzyme has been characterized using an in vitro strand displacement assay. The 75-kDa helicase displaces a 71-nucleotide DNA fragment in an enzyme concentration-dependent and time-dependent reaction. The helicase reaction depends on the presence of a hydrolyzable nucleoside 5'-triphosphate (NTP) suggesting that NTP hydrolysis is required for the unwinding activity. In addition, the enzyme can displace a 343-nucleotide DNA fragment albeit less efficiently. The direction of the unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The molecular size of this helicase and the direction of the unwinding reaction are similar to both helicase II and Rep protein. However, the 75-kDa helicase has been shown to be distinct from both helicase II and Rep protein using immunological, physical, and genetic criteria. The discovery of a new helicase brings the total number of helicases found in E. coli cell extracts (lacking F factor) to five.  相似文献   

16.
In vitro processing of B. mori transfer RNA precursor molecules.   总被引:8,自引:0,他引:8  
R L Garber  S Altman 《Cell》1979,17(2):389-397
Ribonuclease P and 3'-5' nuclease, two enzymatic activities necessary for tRNA synthesis in E. coli, are also found in the silkgland cells of Bombyx mori. B. mori subcellular extracts containing RNAase P activity can cleave the E. coli tRNA precursor molecule endonucleolytically at the same site as the E. coli enzyme, and will also cleave in vitro all E. coli tRNA precursors (pre-tRNAs) which the bacterial enzyme recognizes. B. mori RNAase P will not cleave two E. coli RNAase P substrates that are structurally unrelated to tRNA. Pre-tRNAs from B. mori contain extra 5' and 3' nucleotides as judged by RNA fingerprinting and 5' terminal phosphate analysis. Crude silkgland extracts containing both RNAase P and 3'-5' nuclease can remove the 5' and 3' extra nucleotides from B. mori pre-tRNAs, whereas purified fractions containing RNAase P remove only 5' extra nucleotides. Only large silkworm pre-tRNAs were found to be susceptible to cleavage by B. mori RNAase P. This observation and sequence analysis of intermediates of in vitro processing reactions indicate a two-step process of pre-tRNA maturation in which extra 5' nucleotides are first removed by RNAase P and extra 3' nucleotides are then trimmed off by a 3'-5' nuclease.  相似文献   

17.
The lethal and mutagenic effects of 3H decay in 2' position of deoxyribose residues in DNA of extracellular lambda phage were studied, [2'-3H]-deoxyadenosine (3H-dA) or [2'-3H]-thymidine (3H-dT) being used as labelled DNA precursors. As estimated by the efficiency of the lethal and mutagenic actions of 3H decay in position 2' was significantly lower than that of the decay in the incorporated 3H-pyrimidines. The genetic effects of 3H decay in 2' position may be attributed to the radiation effect of beta-particles on DNA. In UV-irradiated E. coli cells, with the induced SOS repair, the mutagenic effect of 3H-dA in phage lambda is significantly higher than that of 3H-dT. This is perhaps related to the formation in DNA of AP-sites, resulting from 3H-decay in 2' position, and to the predominant incorporation of adenosine residues opposite to AP-sites during SOS repair.  相似文献   

18.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

19.
To discover the physiological role of the Bacillus subtilis ExoA protein, which is similar in amino acid sequence to Escherichia coli exonuclease III, an exoA::Cm disruption was constructed in the chromosomal DNA of B. subtilis. There was no clear difference in tolerance to hydrogen peroxide and alkylating agents between the disruptant and the wild type strain. An expression plasmid of the ExoA in E. coli was constructed by inserting the exoA gene into the expression vector pKP1500. The purified ExoA was used to clarify enzymatic characterizations using synthetic DNA oligomers as substrates. A DNA oligomer containing a 1', 2'-dideoxyribose residue as an AP site, a DNA-RNA chimera oligomer, and a 3' end 32P-labeled oligomer were synthesized. It has been shown that the ExoA has AP endonuclease, 3'-5' exonuclease, ribonuclease H, and 3'-phosphomonoesterase activities. Thus, it has been confirmed that ExoA is a multifunctional DNA-repair enzyme in B. subtilis that is very similar to E. coli exonuclease III except that ExoA has lower 3'-5' exonuclease activity than that of E. coli exonuclease III.  相似文献   

20.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号