首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract : The influence of β‐amyloid on cholinergic neurotransmission was studied by measuring alterations in nicotinic acetylcholine receptors (nAChRs) in autopsy brain tissue from subjects carrying the Swedish amyloid precursor protein (APP) 670/671 mutation. Significant reductions in numbers of nAChRs were observed in various cortical regions of the Swedish 670/671 APP mutation family subjects (‐73 to ‐87%) as well as in sporadic Alzheimer's disease (AD) cases (‐37 to ‐57%) using the nicotinic agonists [3H]epibatidine and [3H]nicotine, which bind with high affinity to both α3 and α4 and to α4 nAChR subtypes, respectively. Saturation binding studies with [3epibatidine revealed two binding sites in the parietal cortex of AD subjects and controls. A significant decrease in Bmax (‐82%) for the high‐affinity site was observed in APP 670/671 subjects with no change in KD compared with controls (0.018 nM APP 670/671 ; 0.036 nM control). The highest load of neuronal plaques (NPs) was observed in the parietal cortex of APP 670/671 brains, whereas the number of [3H]nicotine binding sites was less impaired compared with other cortical brain regions. Except for a positive significant correlation between the number of [3H]nicotine binding sites and number of NPs in the parietal cortex, no strict correlation was observed between nAChR deficits and the presence of NPs and neurofibrillary tangles, suggesting that these different processes may be closely related but not strictly dependent on each other.  相似文献   

2.
The positron emission tomography (PET) ligand 11C‐labeled Pittsburgh compound B (PIB) is used to image β‐amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human‐sequence Aβ in amyloid precursor protein transgenic mice and non‐human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB‐binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, 3H‐PIB was employed to track purification of the PIB‐binding site in > 90% yield from frontal cortical tissue of autopsy‐diagnosed AD subjects. The purified PIB‐binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate‐resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human‐specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues.

  相似文献   


3.
2-(4′-[18F]fluorophenyl)-1,3-benzothiazole was synthesized as a fluorine-18 labelled derivative of the Pittsburg Compound-B (PIB), which has known affinity for amyloid β and promising characteristics as tracer for in vivo visualisation of amyloid deposits in patients suffering from Alzheimer’s disease (AD). Both the nitro-precursor 2-(4′-nitrophenyl)-1,3-benzothiazole and the non-radioactive reference compound were synthesized using a 1-step synthesis pathway. Labelling was achieved by direct aromatic nucleophilic substitution of the nitro-precursor using [18F]fluoride by heating for 20 min at 150 °C and with a radiochemical yield of 38%. The reference compound showed high affinity for amyloid in an in vitro competition binding study using human AD brain homogenates (Ki = 9.0 nM) and fluorescence imaging of incubated transgenic APP mouse brain slices confirmed binding to amyloid plaques. A biodistribution study in normal mice showed a high brain uptake at 2 min pi (3.20% ID/g) followed by a fast washout (60 min pi: 0.21% ID/g). A dynamic μPET study was performed in a transgenic APP and normal WT mouse, but, similar to [11C]PIB, no difference was seen in tracer retention between both kind of mice. The new 18F-labelled 2-phenylbenzothiazole showed excellent preclinical characteristics comparable with those of the 11C-labelled PIB.  相似文献   

4.
Brain insulin signaling deficits contribute to multiple pathological features of Alzheimer's disease (AD). Although intranasal insulin has shown efficacy in patients with AD, the underlying mechanisms remain largely unillustrated. Here, we demonstrate that intranasal insulin improves cognitive deficits, ameliorates defective brain insulin signaling, and strongly reduces β‐amyloid (Aβ) production and plaque formation after 6 weeks of treatment in 4.5‐month‐old APPswe/PS1dE9 (APP/PS1) mice. Furthermore, c‐Jun N‐terminal kinase activation, which plays a pivotal role in insulin resistance and AD pathologies, is significantly inhibited. The alleviation of amyloid pathology by intranasal insulin results mainly from enhanced nonamyloidogenic processing and compromised amyloidogenic processing of amyloid precursor protein (APP), and from a reduction in apolipoprotein E protein which is involved in Aβ metabolism. In addition, intranasal insulin effectively promotes hippocampal neurogenesis in APP/PS1 mice. This study, exploring the mechanisms underlying the beneficial effects of intranasal insulin on Aβ pathologies in vivo for the first time, highlights important preclinical evidence that intranasal insulin is potentially an effective therapeutic method for the prevention and treatment of AD.  相似文献   

5.
Proteolytical cleavage of the β‐amyloid precursor protein (APP) generates β‐amyloid, which is deposited in the brains of patients suffering from Alzheimer's disease (AD). Despite the well‐established key role of APP for AD pathogenesis, the physiological function of APP and its close homologues APLP1 and APLP2 remains poorly understood. Previously, we generated APP–/– mice that proved viable, whereas APP–/–APLP2–/– mice and triple knockouts died shortly after birth, likely due to deficits of neuromuscular synaptic transmission. Here, we generated conditional knockout alleles for both APP and APLP2 in which the promoter and exon1 were flanked by loxP sites. No differences in expression were detectable between wt and floxed alleles, whereas null alleles were obtained upon crossing with Cre‐transgenic deleter mice. These mice will now allow for tissue and time‐point controlled knockout of both genes. genesis 48:200–206, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Memapsin 2 (BACE1, β‐secretase), a membrane aspartic protease, functions in the cleavage of brain β‐amyloid precursor protein (APP) leading to the production of β‐amyloid. Because the excess level of β‐amyloid in the brain is a leading factor in Alzheimer's disease (AD), memapsin 2 is a major therapeutic target for inhibitor drugs. The substrate‐binding cleft of memapsin 2 accommodates 12 subsite residues, from P8 to P4′. We have determined the hydrolytic preference as relative kcat/KM (preference constant) in all 12 subsites and used these data to establish a predictive algorithm for substrate hydrolytic efficiency. Using the sequences from 12 reported memapsin 2 protein substrates, the predicted and experimentally determined preference constants have an excellent correlation coefficient of 0.97. The predictive model indicates that the hydrolytic preference of memapsin 2 is determined mainly by the interaction with six subsites (from P4 to P2′), a conclusion supported by the crystal structure B‐factors calculated for the various residues of transition‐state analogs bound to different memapsin 2 subsites. The algorithm also predicted that the replacement of the P3, P2, and P1 subsites of APP from Val, Lys, and Met, respectively, to Ile, Asp, and Phe, respectively, (APPIDF) would result in a highest hydrolytic rate for β‐amyloid‐generating APP variants. Because more β‐amyloid was produced from cells expressing APPIDF than those expressing APP with Swedish mutations, this designed APP variant may be useful in new memapsin 2 substrates or transgenic mice for AD studies.  相似文献   

7.
Production of Aβ by γ‐secretase is a key event in Alzheimer's disease (AD). The γ‐secretase complex consists of presenilin (PS) 1 or 2, nicastrin (ncstn), Pen‐2, and Aph‐1 and cleaves type I transmembrane proteins, including the amyloid precursor protein (APP). Although ncstn is widely accepted as an essential component of the complex required for γ‐secretase activity, recent in vitro studies have suggested that ncstn is dispensable for APP processing and Aβ production. The focus of this study was to answer this controversy and evaluate the role of ncstn in Aβ generation and the development of the amyloid‐related phenotype in the mouse brain. To eliminate ncstn expression in the mouse brain, we used a ncstn conditional knockout mouse that we mated with an established AD transgenic mouse model (5XFAD) and a neuronal Cre‐expressing transgenic mouse (CamKIIα‐iCre), to generate AD mice (5XFAD/CamKIIα‐iCre/ncstnf/f mice) where ncstn was conditionally inactivated in the brain. 5XFAD/CamKIIα‐iCre/ncstnf/f mice at 10 week of age developed a neurodegenerative phenotype with a significant reduction in Aβ production and formation of Aβ aggregates and the absence of amyloid plaques. Inactivation of nctsn resulted in substantial accumulation of APP‐CTFs and altered PS1 expression. These results reveal a key role for ncstn in modulating Aβ production and amyloid plaque formation in vivo and suggest ncstn as a target in AD therapeutics.  相似文献   

8.
BACE1 (β‐secretase) plays a central role in the β‐amyloidogenesis of Alzheimer’s disease (AD). The ubiquitin–proteasome system, a major intracellular protein quality control system, has been implicated recently in BACE1 metabolism. We report that the SCFFbx2‐E3 ligase is involved in the binding and ubiquitination of BACE1 via its Trp 280 residue of F‐box‐associated domain. Physiologically, we found that Fbx2 was expressed in various intracellular organelles in brain neurons and that BACE1 is colocalized with Fbx2 and the amyloid precursor protein (APP), mainly at the early endosome and endoplasmic reticulum. The former are believed to be the major intracellular compartments where the APP is cleaved by BACE1 and β‐amyloid is produced. Importantly, we found that overexpression of Fbx2 in the primary cortical and hippocampal neurons derived from Tg2576 transgenic mice significantly promoted BACE1 degradation and reduced β‐amyloid production. In the search for specific endogenous modulators of Fbx2 expression, we found that PPARγ coactivator‐1α (PGC‐1α) was capable of promoting the degradation of BACE1 through a mechanism involving Fbx2 gene expression. Interestingly, we found that the expression of both Fbx2 and PGC‐1α was significantly decreased in the brains of aging Tg2576 mice. Our in vivo studies using a mouse model of AD revealed that exogenous adenoviral Fbx2 expression in the brain significantly decreased BACE1 protein levels and activity, coincidentally reducing β‐amyloid levels and rescuing synaptic deficits. Our study is the first to suggest that promoting Fbx2 in the brain may represent a novel strategy for the treatment of AD.  相似文献   

9.
The two presenilin‐1 (PS1) and presenilin‐2 (PS2) homologs are the catalytic core of the γ‐secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1‐ and PS2‐dependent γ‐secretases to the production of β‐amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design molecules efficiently modulating Aβ release without affecting the processing of other γ‐secretase substrates. To that end, we studied PS1‐ and PS2‐dependent substrate processing in murine cells lacking presenilins (PSs) (PS1KO, PS2KO or PS1‐PS2 double‐KO noted PSdKO) or stably re‐expressing human PS1 or PS2 in an endogenous PS‐null (PSdKO) background. We characterized the processing of APP and Notch on both endogenous and exogenous substrates, and we investigated the effect of pharmacological inhibitors targeting the PSs activity (DAPT and L‐685,458). We found that murine PS1 γ‐secretase plays a predominant role in APP and Notch processing when compared to murine PS2 γ‐secretase. The inhibitors blocked more efficiently murine PS2‐ than murine PS1‐dependent processing. Human PSs, especially human PS1, expression in a PS‐null background efficiently restored APP and Notch processing. Strikingly, and contrary to the results obtained on murine PSs, pharmacological inhibitors appear to preferentially target human PS1‐ than human PS2‐dependent γ‐secretase activity.  相似文献   

10.
β-Amyloid (Aβ) deposits are one of the major histopathological hallmarks of Alzheimer's disease (AD). The amyloid-imaging positron emission tomography (PET) tracer [11C]PIB (N-methyl[11C]2-(4′-methylaminophenyl)-6-hydroxy-benzothiazole) is used in the assessment of Aβ deposits in the human brain. [11C]PIB-amyloid interaction and insoluble Aβ40 and Aβ42 peptide levels in the brain were quantified in postmortem tissue from nine AD patients and nine age-matched control subjects in the temporal, frontal and parietal cortices and the cerebellum. Autoradiographical studies showed significantly higher densities of specific [11C]PIB-amyloid binding in gray matter in the temporal and parietal cortex (62 fmol/mg tissue) in AD patients as compared to control subjects, whereas the density was somewhat lower in the frontal cortex (56 fmol/mg tissue). No specific binding could be detected in the AD cerebellum or in the tissues from the control subjects (≤5 fmol/mg tissue). Insoluble Aβ40 and total Aβ levels (i.e. sum of Aβ40 and Aβ42) were significantly higher in patients than in controls in all measured cortical regions as determined using ELISA, which was confirmed using immunohistochemistry. The present findings show a more regional selective distribution of [11C]PIB amyloid binding than previously reported. Moreover, it is suggested that some of the [11C]PIB binding and insoluble Aβ seen in control subjects may be amyloid in the blood vessels.  相似文献   

11.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

12.
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.  相似文献   

13.
IntroductionCurcumin is a neuroprotective compound that inhibits the formation of amyloid oligomers and fibrils and binds to β-amyloid plaques in Alzheimer’s disease (AD). We aimed to synthesize an 18F-labeled curcumin derivate ([18F]4) and to characterize its positron emission tomography (PET) tracer-binding properties to β-amyloid plaques in a transgenic APP23 mouse model of AD.MethodsWe utilized facile one-pot synthesis of [18F]4 using nucleophilic 18F-fluorination and click chemistry. Binding of [18F]4 to β-amyloid plaques in the transgenic APP23 mouse brain cryosections was studied in vitro using heterologous competitive binding against PIB. [18F]4 uptake was studied ex vivo in rodents and in vivo using PET/computed tomography of transgenic APP23 and wild-type control mice.ResultsThe radiochemical yield of [18F]4 was 21 ± 11%, the specific activity exceeded 1 TBq/μmol, and the radiochemical purity exceeded 99.3% at the end of synthesis. In vitro studies of [18F]4 with the transgenic APP23 mouse revealed high β-amyloid plaque binding. In vivo and ex vivo studies demonstrated that [18F]4 has fast clearance from the blood, moderate metabolism but low blood–brain barrier (BBB) penetration.Conclusions[18F]4 was synthesized in high yield and excellent quality. In vitro studies, metabolite profile, and fast clearance from the blood indicated a promising tracer for Aβ imaging. However, [18F]4 has low in vivo BBB penetration and thus further studies are needed to reveal the reason for this and to possibly overcome this issue.  相似文献   

14.
Alzheimer's disease (AD) is the most common form of neurodegeneration and the major cause of dementia. This multifactorial disorder is clinically defined by progressive behavioural and cognitive deficits, and neuropathologically characterized by β‐amyloid aggregation, hyperphosphorylated tau and neuroinflammation. Oridonin, a diterpenoid isolated from Chinese herb Rabdosia rubescens, has multiple biological properties, especially anti‐inflammatory and neuroregulatory activities. Potential therapeutic effects of Oridonin were investigated in an animal model of cerebral amyloidosis for AD, transgenic APP/PS1 mice. Oridonin was suspended in carboxymethylcellulose or loaded with a nanostructured emulsion, and was orally administrated or injected. Before, during and following the experimental treatments, behavioural tests were performed with these transgenic mice and their naive littermates. Following relatively short‐term treatments of 10 days, brain tissue of mice were removed for immunohistochemical assays. The results indicate that both oral treatment and injection of Oridonin significantly attenuated β‐amyloid deposition, plaque‐associated APP expression and microglial activation in brain of transgenic mice. Furthermore, injection of Oridonin‐nanoemulsion ameliorated deficits in nesting, an important affiliative behaviour, and in social interaction. Additional in vitro studies indicated that Oridonin effectively attenuated inflammatory reaction of macrophage and microglial cell lines. Our results suggest that Oridonin might be considered a promising therapeutic option for human AD or other neurodegenerative diseases.  相似文献   

15.
Linjie Yu  Jiali Jin  Xing Ye  Yi Liu  Yun Xu 《Aging cell》2017,16(5):1073-1082
The accumulation and deposition of beta‐amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6‐ and 9‐month‐old APPswe/PS1dE9 (APP/PS1) mice compared with that in age‐matched wild‐type C57BL/6 (B6) mice. Lentivirus ‐mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9‐month‐old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6‐month‐old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.  相似文献   

16.
Accumulation of Aβ in the brains of Alzheimer disease (AD) patients reflects an imbalance between Aβ production and clearance from their brains. Alternative cleavage of amyloid precursor protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic amyloid Aβ40 and Aβ42 peptides that assemble into fibrils and form plaques. Plaque-buildup occurs over an extended time-frame, and the early detection and modulation of plaque formation are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. Tritium-labeled (E,E)-1-[3H]-2,5-bis(4′-hydroxy-3′-carbomethoxystyryl)benzene possesses an improved level of chemical stability relative to a previously reported radioiodinated analog for radiometric quantification of Aβ plaque and tau pathology in brain tissue and in vitro studies with synthetic Aβ and tau fibrils.  相似文献   

17.
Mutations in the presenilin‐1 (PS1) gene are independent causes of familial Alzheimer's disease (AD). AD patients have dysregulated immunity, and PS1 mutant mice exhibit abnormal systemic immune responses. To test whether immune function abnormality caused by a mutant human PS1 gene (mhPS1) could modify AD‐like pathology, we reconstituted immune systems of AD model mice carrying a mutant human amyloid precursor protein gene (mhAPP; Tg2576 mice) or both mhAPP and mhPS1 genes (PSAPP mice) with allo‐geneic bone marrow cells. Here, we report a marked reduction in amyloid‐β (Aβ) levels, β‐amyloid plaques and brain inflammatory responses in PSAPP mice following strain‐matched wild‐type PS1 bone marrow reconstitution. These effects occurred with immune switching from pro‐inflammatory T helper (Th) 1 to anti‐inflammatory Th2 immune responses in the periphery and in the brain, which likely instructed microglia to phagocytose and clear Aβ in an ex vivo assay. Conversely, Tg2576 mice displayed accelerated AD‐like pathology when reconstituted with mhPS1 bone marrow. These data show that haematopoietic cells bearing the mhPS1 transgene exacerbate AD‐like pathology, suggesting a novel therapeutic strategy for AD based on targeting PS1 in peripheral immune cells.  相似文献   

18.
In order to evaluate the role of positron emission tomography (PET) with N-methyl-[11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole, also known as Pittsburgh compound B (PIB), in the early diagnosis of Alzheimer’s disease (AD). Clinical data were collected, and PIB PET cerebral imaging was performed in patients with AD (n = 6), mild cognitive impairment (MCI) (n = 7), and elderly, mentally normal controls (NCs) (n = 7). PET images of the subjects were then analyzed. Visual analysis showed that the radioactivity clearance rate in AD patients was significantly different from that found in the NC group. Furthermore, the radioactivity clearance rate 45 min after PIB injection was significantly lower than the NC group. Images from the MCI group presented heterogeneous results, overlapping with those from both the AD and NC groups. Statistical analysis showed that the radioactivity clearance rate during 5–45 min post-injection was significantly lower in the AD group (41–77%) than the control group (75–81%) (P > 0.05) and the MCI group (59–77%). The radioactivity clearance rate in the bilateral parietal lobes, frontal, temporal, and right occipital lobes, and the bilateral corpora striata in MCI group were lower than that in control group (P < 0.05). PIB PET brain imaging can differentiate early AD patients from NCs and may have certain value in identifying patients progressing to MCI.  相似文献   

19.
20.
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号