首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The teneurin C-terminal associated peptides (TCAP) are a recently discovered family of bioactive peptides that can attenuate aspects of the behavioral stress responses of rats. Because TCAP has some structural similarity to the corticotropin-releasing factor (CRF) family of peptides, and modulates elements of the stress response, TCAP may act to modulate CRF actions in vivo. This hypothesis was tested by investigating anxiety-related behaviors in male rats following repeated intravenous (IV) TCAP-1 administration with either an acute intracerebroventricular (ICV) or IV CRF challenge. TCAP-1 alone did not affect behavioral responses significantly, however did significantly affect CRF-regulated behaviors depending on CRF's mode of injection. In both the elevated plus-maze and the open field tests, TCAP-1 had an anxiolytic effect on ICV CRF responses as indicated by decreased stretched-attend postures in the elevated plus maze (p<0.05), and increased center time and center entries in the open field (p<0.05). However, prior TCAP-1 treatment has an anxiogenic effect on the IV CRF-induced behaviors (decreased center entries and total distance in the open field (p<0.05)). TCAP-1's actions are not mediated through acute changes in glucocorticoid levels and may occur via a central action in the brain. A fluorescently (FITC)-labeled TCAP-1 analog was IV-administered to investigate whether IV TCAP-1 has the potential to regulate central mechanisms by crossing the blood-brain barrier. FITC-TCAP-1 was detected in blood vessels and fibers in the brain indicating that uptake into the brain is a possible route for its interaction with CRF and its receptors. Thus, TCAP may modulate CRF-associated behaviors by a direct action in the CNS.  相似文献   

2.
3.
Transcranial low‐level laser (light) therapy (LLLT) is a new non‐invasive approach to treating a range of brain disorders including traumatic brain injury (TBI). We (and others) have shown that applying near‐infrared light to the head of animals that have suffered TBI produces improvement in neurological functioning, lessens the size of the brain lesion, reduces neuroinflammation, and stimulates the formation of new neurons. In the present study we used a controlled cortical impact TBI in mice and treated the mice either once (4 h post‐TBI, 1‐laser), or three daily applications (3‐laser) with 810 nm CW laser 36 J/cm2 at 50 mW/cm2. Similar to previous studies, the neurological severity score improved in laser‐treated mice compared to untreated TBI mice at day 14 and continued to further improve at days 21 and 28 with 3‐laser being better than 1‐laser. Mice were sacrificed at days 7 and 28 and brains removed for immunofluorescence analysis. Brain‐derived neurotrophic factor (BDNF) was significantly upregulated by laser treatment in the dentate gyrus of the hippocampus (DG) and the subventricular zone (SVZ) but not in the perilesional cortex (lesion) at day 7 but not at day 28. Synapsin‐1 (a marker for synaptogenesis, the formation of new connections between existing neurons) was significantly upregulated in lesion and SVZ but not DG, at 28 days but not 7 days. The data suggest that the benefit of LLLT to the brain is partly mediated by stimulation of BDNF production, which may in turn encourage synaptogenesis. Moreover the pleiotropic benefits of BDNF in the brain suggest LLLT may have wider applications to neurodegenerative and psychiatric disorders.

Neurological Severity Score (NSS) for TBI mice  相似文献   


4.
A recombinant human parathyroid hormone fragment, Pro-Pro-[Arg(11)]hPTH(1-34)-Pro-Pro (MW=4550 Da), was developed by substituting Arg for Leu at position 11 and adding Pro-Pro at the carboxyl terminus. Following a single injection (0.5-13.5 μg/bird) of the rhPTH fragment, the serum calcium level in chickens increased 12-42% (P<0.05) after 1h as determined by the Parson's Chicken Assay. The functional activity of Pro-Pro-[Arg(11)]hPTH(1-34)-Pro-Pro may be due to removal of the N-terminus Pro-Pro- by X-prolyl dipeptidyl peptidase IV (DPPIV) in vivo, increasing its activity compared to Pro-Pro-hPTH(1-34). This artificial rhPTH fragment could be used to increase calcium mobilization and potentially improve bone health.  相似文献   

5.
Adult rat retinal ganglion cells (RGC) undergo degeneration after optic nerve transection. Studies have shown that exogenously applied neurotrophic factors such as brain‐derived neurotrophic factor (BDNF) can attenuate axotomy‐induced as well as developmental RGC death. Here, we examined whether glial cell line–derived neurotrophic factor (GDNF), a known neurotrophic factor for dopaminergic neurons and motor neurons, could provide neurotrophic support to RGC in adult rats. We determined whether RGC could retrogradely transport GDNF from their target tissue. After injection into the superior colliculus of adult rats, 125I‐GDNF was retrogradely transported to contralateral eyes but not to ipsilateral eyes. The transport of 125I‐GDNF could be blocked by coinjection of excess unlabeled GDNF, indicating that it was receptor mediated. We tested whether intravitreally applied GDNF could prevent axotomy‐induced RGC degeneration. The RGC were prelabeled with Fluorogold (FG) and axotomized by intraorbital optic nerve transection. GDNF, BDNF (positive control), cytochrome c (negative control), or a GDNF/BDNF combination was injected intravitreally on days 0 and 7. On day 14, FG‐labeled RGC were counted from whole‐mount retinas. We found that, similar to BDNF, GDNF could significantly attenuate the degeneration of RGC in a dose‐dependent fashion. Furthermore, the combination treatment of GDNF and BDNF showed better protection than either factor used individually. Our data indicate that GDNF is a neurotrophic factor for the adult rat RGC. GDNF, like BDNF, may be useful for the treatment of human RGC degenerative diseases. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 382–390, 1999  相似文献   

6.
目的:观察脑源性神经营养因子(BDNF)对大鼠后足切割疼痛的影响。方法:采用纵行切割大鼠后足作为疼痛模型,运用免疫组织化学与免疫荧光双标记方法,观察大鼠后足切割后不同时间点(1-72hr)BDNF在相应节段背根神经节与脊髓内表达的变化。腹腔或鞘内注射BDNF抗体中和内源性BDNF后,以Von Frey尼龙纤维刺激后足行机械痛敏评价。结果:大鼠后足切割后1-24hr内,BDNF在切割侧L42-L5脊髓后角表达明增加,BDNF主要位于后角神经元内与神经末梢,星形胶质细胞与小胶质细胞内未见明显表达;在L42-L5背根神经节,BNDF免疫阳性细胞百分比在切割后1-24hr内也明显增加,增加的主要为大直经神经元;鞘内给予BDNF抗体可明显增加大鼠后足切割后的缩足阈值,而腹腔给予BDNF抗体对大鼠的缩足阈值影响较小。结论:BDNF参与了大鼠后足切割后机械痛敏的过程。  相似文献   

7.
Serotonergic neurones are among the first to develop in the central nervous system. Their survival and maturation is promoted by a variety of factors, including serotonin itself, brain-derived neurotrophic factor (BDNF) and S100beta, an astrocyte-specific Ca(2+) binding protein. Here, we used BDNF-deficient mice and cell cultures of embryonic raphe neurones to determine whether or not BDNF effects on developing serotonergic raphe neurones are influenced by its action on glial cells. In BDNF-/- mice, the number of serotonin-immunoreactive neuronal somata, the amount of the serotonin transporter, the serotonin content in the striatum and the hippocampus, and the content of 5-hydroxyindoleacetic acid in all brain regions analysed were increased. By contrast, reduced immunoreactivity was found for myelin basic protein (MBP) in all brain areas including the raphe and its target region, the hippocampus. Exogenously applied BDNF increased the number of MBP-immunopositive cells in the respective culture systems. The raphe area displayed selectively reduced immunoreactivity for S100beta. Accordingly, S100beta was increased in primary cultures of pure astrocytes by exogenous BDNF. In glia-free neuronal cultures prepared from the embryonic mouse raphe, addition of BDNF supported the survival of serotonergic neurones and increased the number of axon collaterals and primary dendrites. The latter effect was inhibited by the simultaneous addition of S100beta. These results suggest that the presence of BDNF is not a requirement for the survival and maturation of serotonergic neurones in vivo. BDNF is, however, required for the local expression of S100beta and production of MBP. Therefore BDNF might indirectly influence the development of the serotonergic system by stimulating the expression of S100beta in astrocytes and the production MBP in oligodendrocytes.  相似文献   

8.
We evaluated a possible association between the brain-derived neurotrophic factor (BDNF) gene and susceptibility to obsessive-compulsive disorder (OCD) by genotyping a number of single-nucleotide polymorphisms (SNPs) and one microsatellite marker from the extended BDNF locus in 164 triads with OCD. Extensive background linkage disequilibrium was observed at this locus. Single-locus transmission-distortion tests revealed significant evidence of association with the disease for all the BDNF gene markers tested, including a Val66Met variation affecting the sequence of the proBDNF protein. Analysis of multi-SNP haplotypes provided similar results. Haplotype transmission comparisons in this and previous studies point to a functionally distinct BDNF haplotype uniquely marked by the rare Met66 allele, which is undertransmitted and likely confers a protective effect in OCD and other psychiatric disorders.  相似文献   

9.
10.
Brain-derived neurotrophic factor (BDNF) is expressed by endothelial cells. We investigated the characteristics of BDNF expression by brain-derived endothelial cells and tested the hypothesis that BDNF serves paracrine and autocrine functions affecting the vasculature of the central nervous system. In addition to expressing TrkB and p75NTR and BDNF under normoxic conditions, these cells increased their expression of BDNF under hypoxia. While the expression of TrkB is unaffected by hypoxia, TrkB exhibits a base-line phosphorylation under normoxic conditions and an increased phosphorylation when BDNF is added. TrkB phosphorylation is decreased when endogenous BDNF is sequestered by soluble TrkB. Exogenous BDNF elicits robust angiogenesis and survival in three-dimensional cultures of these endothelial cells, while sequestration of endogenous BDNF caused significant apoptosis. The effects of BDNF engagement of TrkB appears to be mediated via the phosphatidylinositol (PI) 3-kinase-Akt pathway. Modulation of BDNF levels directly correlate with Akt phosphorylation and inhibitors of PI 3-kinase abrogate the BDNF responses. BDNF-mediated effects on endothelial cell survival/apoptosis correlated directly with activation of caspase 3. These endothelial cells also express p75NTR and respond to its preferred ligand, pro-nerve growth factor (pro-NGF), by undergoing apoptosis. These data support a role for neurotrophins signaling in the dynamic maintenance/differentiation of central nervous system endothelia.  相似文献   

11.
Dendritic development is essential for the establishment of a functional nervous system. Among factors that control dendritic development, brain-derived neurotrophic factor (BDNF) has been shown to regulate dendritic length and complexity of cortical neurons. However, the cellular and molecular mechanisms that underlie these effects remain poorly understood. In this study, we examined the role of amino acid transport in mediating the effects of BDNF on dendritic development. We show that BDNF increases System A amino acid transport in cortical neurons by selective up-regulation of the sodium-coupled neutral amino acid transporter (SNAT)1. Up-regulation of SNAT1 expression and System A activity is required for the effects of BDNF on dendritic growth and branching of cortical neurons. Further analysis revealed that induction of SNAT1 expression and System A activity by BDNF is necessary in particular to enhance synthesis of tissue-type plasminogen activator, a protein that we demonstrate to be essential for the effects of BDNF on cortical dendritic morphology. Together, these data reveal that stimulation of neuronal differentiation by BDNF requires the up-regulation of SNAT1 expression and System A amino acid transport to meet the increased metabolic demand associated with the enhancement of dendritic growth and branching.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in the development and maintenance of vertebrate nervous systems. Although there were several studies in classical animal models, scarce information for fish was available. The main purpose of this study was to analyze the distribution of BDNF in the brain and retina of the cichlid fish Cichlasoma dimerus. By immunohistochemistry we detected BDNF-like immunoreactive cells in the cytoplasm and the nuclei of the ganglion cell layer and the inner nuclear layer of the retina. In the optic tectum, BDNF-like immunoreactivity was detected in the nucleus of neurons of the stratum periventriculare and the stratum marginale and in neurons of the intermediate layers. In the hypothalamus we found BDNF-like immunoreactivity mainly in the cytoplasm of the nucleus lateralis tuberis and the nucleus of the lateral recess. To confirm the nuclear and cytoplasm localization of BDNF we performed subcellular fractionation, followed by Western blot, detecting a 39 kDa immunoreactive-band corresponding to a possible precursor form of BDNF in both fractions. BDNF-like immunoreactivity was distributed in areas related with photoreception (retina), the integration center of retinal projections (optic tectum) and the control center of background and stress adaptation (hypothalamus). These results provide baseline anatomical information for future research about the role of neurotrophins in the adult fish central nervous system.  相似文献   

13.
Throughout development, neuronal progenitors undergo complex transformation into polarized nerve cells, warranting the directional flow of information in the neural grid. The majority of neuronal polarization studies have been carried out on rodent-derived precursor cells, programmed to develop into neurons. Unlike rodent neuronal cells, SH-SY5Y cells derived from human bone marrow present a sub-clone of neuroblastoma line, with their transformation into neuron-like cells showing a range of highly instructive neurobiological characteristics. We applied two-step retinoic acid (RA) and brain-derived neurotrophic factor (BDNF) protocol to monitor the conversion of undifferentiated SH-SY5Y into neuron-like cells with distinctly polarized axon-dendritic morphology and formation of bona fide synaptic connections. We show that BDNF is a key driver and regulator of the expression of axonal marker tau and dendritic microtubule-associated protein-2 (MAP2), with their sorting to distinct cellular compartments. Using selective kinase inhibitors downregulating BDNF-TrkB signaling, we demonstrate that constitutive activation of TrkB receptor is essential for the maintenance of established polarization morphology. Importantly, the proximity ligation assay applied in our preparation demonstrates that differentiating neuron-like cells develop elaborate synaptic connections enriched with hallmark pre- and postsynaptic proteins. Described herein findings highlight several fundamental processes related to neuronal polarization and synaptogenesis in human-derived cells, which are of major relevance to neurobiology and translational neuroscience.  相似文献   

14.
A growth hormone-releasing factor (GRF)-like molecule has been partially purified and characterized from acid extracts of codfish (Gadhus morhua) brain using immunoaffinity and gel chromatography, followed by HPLC. This material has a mol.wt. which is similar to known mammalian forms of GRF but is immunologically and/or chromatographically distinct from previously described GRF peptides. However, it is related to rat(r) GRF(1-43) since it causes marked displacement in the rGRF RIA. Codfish GRF is a highly specific and potent hypophysiotropic factor as shown by its ability to stimulate the release of GH, but no other hormone, from rat anterior pituitary cells in vitro. These findings suggest that, phylogenetically, GRF is an ancient molecule with its biologic activity and certain immunoreactive domain(s) conserved, at least, from teleost to mammal.  相似文献   

15.
Rho family GTPases have important roles in mediating the effects of guidance cues and growth factors on the motility of neuronal growth cones. We previously showed that the neurotrophin BDNF regulates filopodial dynamics on growth cones of retinal ganglion cell axons through activation of the actin regulatory proteins ADF and cofilin by inhibiting a RhoA-dependent pathway that phosphorylates (inactivates) ADF/cofilin. The GTPase Cdc42 has also been implicated in mediating the effects of positive guidance cues. In this article we investigated whether Cdc42 is involved in the effects of BDNF on filopodial dynamics. BDNF treatment increases Cdc42 activity in retinal neurons, and neuronal incorporation of constitutively active Cdc42 mimics the increases in filopodial number and length. Furthermore, constitutively active and dominant negative Cdc42 decreased and increased, respectively, the activity of RhoA in retinal growth cones, indicating crosstalk between these GTPases in retinal growth cones. Constitutively active Cdc42 mimicked the activation of ADF/cofilin that resulted from BDNF treatment, while dominant negative Cdc42 blocked the effects of BDNF on filopodia and ADF/cofilin. The inability of dominant negative Cdc42 to block ADF/cofilin activation and stimulation of filopodial dynamics by the ROCK inhibitor Y-27632 indicate interaction between Cdc42 and RhoA occurs upstream of ROCK. Our results demonstrate crosstalk occurs between GTPases in mediating the effects of BDNF on growth cone motility, and Cdc42 activity can promote actin dynamics via activation of ADF/cofilin.  相似文献   

16.
利用聚合酶链式反应,首次从白鱀豚基因组DNA 中扩增和克隆到脑源神经营养因子的编码区。在该段序列中含有一个长为747 bp 的开放阅读框,无内含子,编码一个由248 个氨基酸组成的蛋白质,预计分子量为27 953.7道尔顿。其中包括由18 个氨基酸残基组成的信号肽区,111 个氨基酸残基组成的前肽区及119 个氨基酸残基组成的成熟区。序列分析表明,白鱀豚脑源神经营养因子基因编码区的核苷酸序列与其它哺乳动物相似性超过90%,而与猪牛相似性相对较高(分别为95% 和94.7%)。氨基酸序列比较发现,白鱀豚BDNF 前体蛋白的氨基酸序列与其它哺乳动物具有94.5% ~99.5%的相似性,显示了极高的保守性。通过邻接法进行的系统发生分析中,鲸目和食肉目的物种分别聚为单系;与其它哺乳动物相比,鲸类与有蹄类的牛和猪的亲缘关系相对较近,这与鲸类和有蹄类之间具有相对较近的亲缘关系相符。
  相似文献   

17.
Neuropathic pain concurrent with mood disorder from peripheral nerve injury is a serious clinical problem that significantly affects quality of life. Recent studies have suggested that a lack of brain-derived neurotrophic factor (BDNF) in the limbic system may cause this pain-emotion. BDNF is induced in cultured neurons by 4-methylcatechol (4-MC), but the role of 4-MC-induced BDNF in pain-emotion is poorly understood. Thus, we assessed the possible involvement of BDNF in brain in depression-like behavior during chronic pain following peripheral nerve injury. In addition, we examined whether intracerebroventricular (i.c.v.) 4-MC prevents chronic pain in rats and produces an antidepressant effect. Sprague-Dawley rats implanted intracerebroventricularly with a PE-10 tube were subjected to chronic constriction injury (CCI). Pain was assessed by a reduction in paw withdrawal latency (PWL) to heat stimuli after CCI. We also used a forced swimming testing (FST; time of immobility, in seconds) from day 14 to day 21 after CCI. Modulation of pain and emotional behavior was performed by injection of PD0325901 (a MEK1/2 inhibitor). 4-MC (100 nM) was continuously administered i.c.v. for 3 days during the period from day 14 to day 21 after CCI. To block analgesic and antidepressant effects, anti-BDNF antibody or K252a (a TrkB receptor inhibitor) was injected in combination with 4-MC. Naloxone was also coadministered to confirm the analgesic effect of 4-MC. During the chronic stage after CCI, the rats showed a sustained decrease in PWL (thermal hyperalgesia) associated with extension of the time of immobility (depression-like behavior). PD0325901 significantly reduced the decrease in PWL and the increased time of immobility after CCI. The decreased PWL and increased time of immobility were also reduced by 4-MC and by treatment with an ERK1/2 inhibitor. These effects of 4-MC i.c.v. were reversed by anti-BDNF and K252a. The analgesic effect of 4-MC i.c.v. was also antagonized by naloxone. Based on these results, we suggest that a lack of BDNF and activation of ERK1/2 in the pain-emotion network in the CNS may be involved in depression-like behavior during chronic pain. 4-MC i.c.v. ameliorates chronic pain and depression-like behavior by producing of BDNF and normalization of ERK1/2 activation. Therefore, enhancement of BDNF may be a new treatment strategy for chronic pain associated with depression.  相似文献   

18.
IGF-1对细胞凋亡的抑制调控   总被引:5,自引:0,他引:5  
胰岛素样生长因子-1(insulin—like growth factor,IGF—1)是胰岛素样生长因子家族中的一种,通过与IGF-1受体相结合产生生物学效应,是通过内分泌、自分泌和旁分泌的三种途径分泌的低分子多肽。近些年来,研究发现IGF-1不仅具有胰岛素类似的功能以及介导生长激素的作用,还是多种类型细胞凋亡的一个重要抑制因子。本文就IGF-1抑制细胞凋亡的信号转导途径和IGF-1对Bcl-2家族、caspases家族以及关键转录因子的调控机制作一综述。  相似文献   

19.
ACTH-(1–24) was rapidly degraded to its constituent amino acids upon incubation with soluble mouse brain preparations. Breakdown had a pH optimum near neutrality, a Km of 1 × 10?4m, and a Vmax of 63 nmol/mg protein/h. Initially a preferential liberation of the amino acids of the N-terminal region of the hormone was observed, followed shortly by a relatively uniform release of amino acids originating throughout the ACTH-(1–24) sequence. Enzymes cleaving internal bonds appear to play a major role in the degradation. The short lag period between hormone disappearance and amino acid formation indicated that few if any large peptides were accumulated during incubation. Pepstatin, chymostatin, antipain, leupeptin, bacitracin, l-1-tosylamide-2-phenylethylchloromethyl ketone, soybean trypsin inhibitor, and diisopropyl-fluorophosphate had little or no effect on amino acid release. Puromycin, bestatin, and EDTA partially inhibited amino acid formation, affecting mainly the residues in the central and carboxyl portions of ACTH-(1–24). N-Ethylmaleimide strongly inhibited the release of all amino acids, indicating extensive involvement of sulfhydryl peptidases in ACTH-(1–24) breakdown.  相似文献   

20.
Adult rat retinal ganglion cells (RGC) undergo degeneration after optic nerve transection. Studies have shown that exogenously applied neurotrophic factors such as brain-derived neurotrophic factor (BDNF) can attenuate axotomy-induced as well as developmental RGC death. Here, we examined whether glial cell line-derived neurotrophic factor (GDNF), a known neurotrophic factor for dopaminergic neurons and motor neurons, could provide neurotrophic support to RGC in adult rats. We determined whether RGC could retrogradely transport GDNF from their target tissue. After injection into the superior colliculus of adult rats, 125I-GDNF was retrogradely transported to contralateral eyes but not to ipsilateral eyes. The transport of 125I-GDNF could be blocked by coinjection of excess unlabeled GDNF, indicating that it was receptor mediated. We tested whether intravitreally applied GDNF could prevent axotomy-induced RGC degeneration. The RGC were prelabeled with Fluorogold (FG) and axotomized by intraorbital optic nerve transection. GDNF, BDNF (positive control), cytochrome c (negative control), or a GDNF/BDNF combination was injected intravitreally on days 0 and 7. On day 14, FG-labeled RGC were counted from whole-mount retinas. We found that, similar to BDNF, GDNF could significantly attenuate the degeneration of RGC in a dose-dependent fashion. Furthermore, the combination treatment of GDNF and BDNF showed better protection than either factor used individually. Our data indicate that GDNF is a neurotrophic factor for the adult rat RGC. GDNF, like BDNF, may be useful for the treatment of human RGC degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号