首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In ruminants, both the endometrium and the conceptus (embryo and associated extraembryonic membranes) trophectoderm synthesizes and secretes prostaglandins (PG) during early pregnancy. In mice and humans, PGs regulate endometrial function and conceptus implantation. In Study One, bred ewes received intrauterine infusions of vehicle as a control (CX) or meloxicam (MEL), a PG synthase (PTGS) inhibitor from Days 8-14 postmating, and the uterine lumen was flushed on Day 14 to recover conceptuses and assess their morphology. Elongating and filamentous conceptuses (12 cm to >14 cm in length) were recovered from all CX-treated ewes. In contrast, MEL-treated ewes contained mostly ovoid or tubular conceptuses. PTGS activity in the uterine endometrium and amounts of PGs were substantially lower in uterine flushings from MEL-treated ewes. Receptors for PGE2 and PGF2 alpha were present in both the conceptus and the endometrium, particularly the epithelia. In Study Two, cyclic ewes received intrauterine infusions of CX, MEL, recombinant ovine interferon tau (IFNT), or IFNT and MEL from Days 10-14 postestrus. Infusion of MEL decreased PGs in the uterine lumen and expression of a number of progesterone-induced endometrial genes, particularly IGFBP1 and HSD11B1. IFNT increased endometrial PTGS activity and the amount of PGs in the uterine lumen. Interestingly, IFNT stimulation of many genes (FGF2, ISG15, RSAD2, CST3, CTSL, GRP, LGALS15, IGFBP1, SLC2A1, SLC5A1, SLC7A2) was reduced by co-infusion with MEL. Thus, PGs are important regulators of conceptus elongation and mediators of endometrial responses to progesterone and IFNT in the ovine uterus.  相似文献   

2.
In sheep, the trophectoderm of the elongating conceptus secretes interferon tau (IFNT) and prostaglandins (PGE2, PGF2alpha, PGI2). The PGs are derived from PG synthase 2 (PTGS2), and inhibition of PTGS2 in utero prevents conceptus elongation. IFNT increases expression of many genes in the endometrial epithelia that regulate conceptus elongation. This study tested the hypothesis that PGs secreted by the conceptus regulate endometrial functions that govern conceptus elongation. Cyclic ewes received intrauterine infusions of control vehicle or early pregnancy levels of IFNT, PGE2, PGF2alpha, or PGI2 from Days 10-14 postestrus. Expression levels of endometrial GRP, IGFBP1, and LGALS15, whose products stimulate trophectoderm cell migration and attachment, were increased by PGE2, PGI2, and IFNT. All PGs and IFNT increased expression of the HEXB protease gene, but only IFNT increased the CST6 protease inhibitor gene. Differential effects of PGs were observed for expression of the CTSL protease gene and its inhibitor, CST3. IFNT, PGF2alpha, and PGI2 increased ANGPTL3 expression, but only IFNT and PGE2 increased HIF1A expression, both of which regulate angiogenesis. For glucose transporters, IFNT and all PGs increased SLC2A1 expression, but only PGs increased SLC2A5 expression, whereas endometrial SLC2A12 and SLC5A1 expression levels were increased by IFNT, PGE2, and PGF2alpha. Infusions of all PGs and IFNT increased the amino acid transporter SLC1A5, but only IFNT increased SLC7A2 expression. In the uterine lumen, only IFNT increased glucose levels, and only PGE2 and PGF2alpha increased total amino acids. These results indicate that PGs and IFNT from the conceptus coordinately regulate endometrial functions important for growth and development of the conceptus during the peri-implantation period of pregnancy.  相似文献   

3.
Conceptus development and elongation is required for successful pregnancy establishment in ruminants and is coincident with the production of interferon τ (IFNT) and prostaglandins (PGs). In both the conceptus trophectoderm and endometrium, PGs are primarily synthesized through a prostaglandin‐endoperoxide synthase 2 (PTGS2) pathway and modify endometrial gene expression and thus histotroph composition in the uterine lumen to promote conceptus growth and survival. Chemical inhibition of PG production by both the endometrium and the conceptus prevented elongation in sheep. However, the contributions of conceptus‐derived PGs to preimplantation conceptus development remain unclear. In this study, CRISPR‐Cas9 genome editing was used to inactivate PTGS2 in ovine embryos to determine the role of PTGS2‐derived PGs in conceptus development and elongation. PTGS2 edited conceptuses produced fewer PGs, but secreted similar amounts of IFNT to their Cas9 control counterparts and elongated normally. Expression of PTGS1 was lower in PTGS2 edited conceptuses, but PPARG expression and IFNT secretion were unaffected. Content of PGs in the uterine lumen was similar as was gene expression in the endometrium of ewes who received either Cas9 control or PTGS2 edited conceptuses. These results support the idea that intrinsic PTGS2‐derived PGs are not required for preimplantation embryo or conceptus survival and development in sheep.  相似文献   

4.
5.
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.  相似文献   

6.
During the implantation period, the porcine conceptus secretes interleukin-1beta (IL1B) that may be involved in the establishment of pregnancy in pigs. However, the regulatory mechanism for IL1B receptor expression and the function of IL1B in the uterine endometrium are not well elucidated. In this study, we determined IL1B receptor expression in the uterine endometrium of pigs during pregnancy. IL1B receptor subtypes, IL1 receptor type I (IL1R1) and IL1 receptor accessory protein (IL1RAP) were expressed in the uterine endometrium with the expression being most abundant on Day 12 of pregnancy primarily in the luminal and glandular epithelial cells. Expression of IL1R1 mRNA increased in response to IL1B in a dose-dependent manner, and expression of IL1RAP mRNA increased in response to both IL1B and estradiol, indicating that expression of endometrial IL1B receptors was regulated cooperatively by IL1B and estrogen of conceptus origin. During the peri-implantation period, the porcine uterine endometrium actively synthesizes and secretes prostaglandins (PGs). IL1B increased expression of PTGS1 and PTGS2 genes that are rate-limiting for PG synthesis in the uterine endometrium. Collectively, the results indicated that IL1B regulates expression of IL1R1 and IL1RAP and stimulates expression of PTGS1 and PTGS2 that are considered to be the most rate-limiting enzymes for endometrial synthesis of PGs during the peri-implantation period of pregnancy in pigs.  相似文献   

7.
Total glucose in ovine uterine lumenal fluid increases 6-fold between Days 10 and 15 of gestation, but not the estrous cycle; however, mechanisms for glucose transport into the uterine lumen and uptake by conceptuses (embryo/fetus and associated membranes) are not established. This study determined the effects of the estrous cycle, pregnancy, progesterone (P4), and interferon tau (IFNT) on expression of both facilitative (SLC2A1, SLC2A3, and SLC2A4) and sodium-dependent (SLC5A1 and SLC5A11) glucose transporters in ovine uterine endometria from Days 10 to 16 of the estrous cycle and Days 10 to 20 of pregnancy, as well as in conceptuses from Days 10 to 20 of pregnancy. The SLC2A1 and SLC5A1 mRNAs and proteins were most abundant in uterine luminal epithelia and superficial glandular epithelia (LE/sGE), whereas SLC2A4 was present in stromal cells and glandular epithelia (GE). SLC5A11 mRNA was most abundant in endometrial GE, whereas SLC2A3 mRNA was not detectable in endometria. SLC2A1, SLC2A3, SLC2A4, SLC5A1, and SLC5A11 were expressed in the trophectoderm and endoderm of conceptuses. Steady-state levels of SLC2A1, SLC5A1, and SLC5A11 mRNAs, but not SLC2A4 mRNA, were greater in endometria from pregnant than from cyclic ewes. Progesterone increased SLC2A1, SLC5A11, and SLC2A4 mRNAs in the LE/sGE and SLC5A1 in the GE of ovariectomized ewes. Expression of SLC5A1 was inhibited by ZK136,317 (progesterone receptor antagonist), and the combination of ZK136,317 and IFNT further decreased expression in GE. In constrast, P4 induced and IFNT stimulated expression of SLC2A1 and SLC5A11, and these effects were blocked by ZK136,317. Results of this study indicate differential expression of facilitative and sodium-dependent glucose transporters in ovine uteri and conceptuses for transport and uptake of glucose, and that P4 or P4 and IFNT regulate their expression during the peri-implantation period of pregnancy.  相似文献   

8.
9.
10.
11.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10-16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.  相似文献   

12.
Role of conceptus secretory products in establishment of pregnancy   总被引:2,自引:0,他引:2  
Conceptuses produce steroids, prostaglandins, proteins and possibly other unidentified agents which may play a role in the establishment and maintenance of pregnancy. A key event in this process is protection of the corpus luteum (CL) from the luteolytic activity of prostaglandin (PG) F-2 alpha of uterine origin. Oestrogens produced by the pig conceptuses between Days 11 and 16 appear to exert an antiluteolytic effect resulting in the sequestering of PGF-2 alpha within the uterine lumen. Failure of the pregnant uterus to release PGF-2 alpha in an endocrine fashion, therefore, allows for maintenance of CL function. Conceptuses of sheep and cattle produce proteins which, when introduced into the uterine lumen of nonpregnant ewes and cows, suppress the ability of oestradiol and oxytocin to stimulate uterine production of PGF-2 alpha. These conceptus secretory proteins appear to exert an antiluteolytic effect by inhibiting uterine production of luteolytic amounts of PGF-2 alpha. The horse conceptus produces both oestrogens and proteins during early pregnancy when uterine production of PGF-2 alpha is suppressed. Co-culture of horse endometrium and conceptus inhibits endometrial production of PGF-2 alpha. Conceptuses of pigs, sheep and cattle undergo elongation to achieve apposition between trophectoderm and endometrium but the horse embryo migrates rapidly and consistently throughout the uterus to achieve endometrial contact.  相似文献   

13.
14.
Mammalian conceptuses must provide a chemical signal to the maternal system to insure maintenance of corpus luteum (CL) function and of progesterone production and continuation of uterine endometrial secretory activity. These events insure that the developing conceptus is provided with appropriate nutrients, regulatory enzymes and endocrine state to allow successful establishment and maintenance of pregnancy. Pig blastocysts begin to produce estrogens by Day 11 of pregnancy, which prevents secretion of the uterine luteolytic factor (PGF2 alpha) in an endocrine direction, but allows secretion in an exocrine direction, i.e., into the uterine lumen. Therefore, CL are "protected." Blastocyst estrogens also trigger secretion of a group of proteins, including uteroferrin, an iron transport protein, and a family of protease inhibitors whose biosynthesis within the uterine glandular epithelium is under the control of progesterone. Estrogen also appears to promote accumulation of glucose and fructose within the uterine lumen. A complex in vivo "culture medium" is thereby established to promote conceptus development. Pig blastocysts do not undergo invasive implantation within the uterine lumen although they produce the protease, plasminogen activator. Invasion may be prevented by endometrial secretion of progesterone-induced protease inhibitors which are produced in large amounts. In addition to estrogens of conceptus origin, calcium and prostaglandins PGF2 alpha and E2 may affect the uterine vasculature, water and electrolyte transport, capillary permeability, conceptus steroid production, and related events during pregnancy. The blastocysts of the large domestic animals also secrete proteins which include a large glycoprotein (Mr approximately 600,000) and a small acidic protein (Mr approximately 17,000). The latter has been purified from sheep and named ovine trophoblast protein I. These proteins may play unique roles in early pregnancy with respect to establishment and maintenance of pregnancy in the ewe, sow, mare, and cow.  相似文献   

15.
We studied the biosynthesis of two proteins, p70 (Mr 70,000; pI 4.0) and p15 (Mr 15,000; pI 5.7), by endometrial tissues from ewes between Days 12 and 24 of pregnancy and between Days 12 and 16 of the oestrous cycle to determine whether production of the two was correlated with the period of biosynthesis of ovine trophoblast protein-1 (oTP-1) by the conceptus. We also compared the protein synthetic activities of endometrium from gravid and non-gravid horns of pregnant ewes at Days 14, 16 and 18 in which the conceptus had been confined to one uterine horn. Proteins p70 and p15 were produced maximally between Days 14 and 20 of pregnancy, but synthesis by endometrial cultures from cyclic ewes was low or absent. Furthermore, synthesis of Protein p70 in particular was much greater by the gravid than non-gravid horn of unilaterally pregnant ewes. We conclude that synthesis of Proteins p70 and p15 by the uterus of sheep coincides with the time of oTP-1 production by the conceptus.  相似文献   

16.
Peri-implantation conceptus (embryo/fetus and associated extraembryonic membranes) growth and development are primarily regulated by secretions from the uterus. This study investigated the effects of progesterone on preimplantation conceptus development and endometrial galectin 15 (LGALS15). Ewes received daily injections of either corn oil (CO) vehicle or 25 mg progesterone (P4) from 36 h postmating to hysterectomy. Treatment with P4 increased blastocyst diameter by 220% on Day 9 and advanced time of elongation of blastocysts to a filamentous conceptus on Day 12. Effects of P4 treatment on blastocyst development were blocked by administration of RU486, a progesterone receptor antagonist. Consistent with early elongation of blastocysts, interferon tau (IFNT) protein was about 50-fold greater in uterine flushes from Day 12 in ewes receiving P4 compared with those receiving CO. Expression of cathepsin L (CTSL) and radical S-adenosyl methionine domain containing 2 (RSAD2), both IFNT-stimulated genes, was increased in endometria of Day 12 P4-treated ewes. LGALS15 mRNA, expressed only in the endometrial luminal epithelium and superficial glands, was detected between Days 9 and 12 and was more abundant in ewes receiving P4 than in those receiving CO on both Days 9 and 12. RU486 treatment ablated P4 induction of LGALS15 mRNA in the endometrial epithelia. LGALS15 protein in uterine flushings was not different on Day 9 but tended to be greater in P4-treated ewes than in those receiving CO on Day 12. The advanced development of blastocysts in P4-treated ewes is hypothesized to involve early induction of specific genes in the endometrial epithelia, such as LGALS15, and undoubtedly components of uterine histotroph.  相似文献   

17.
18.
Osteopontin (OPN) is an acidic 70-kDa glycoprotein that is cleaved by proteases to yield 45-kDa and 24-kDa fragments. The 70-kDa and 45-kDa proteins contain a Gly-Arg-Gly-Asp-Ser (GRGDS) sequence that binds to cell surface integrins (primarily alpha(v)beta(3) heterodimer) to promote cell-cell attachment and cell spreading. A 70-kDa acidic protein was previously detected by two-dimensional (2D) PAGE in Day 17 pregnant endometrial cytosolic extracts using Stainsall and identified as immunoreactive OPN using Western blotting. Three forms of immunoreactive OPN proteins (70, 45, and 24 kDa) were detected by 1D PAGE and Western blot analysis of endometrial extracts. OPN protein in endometrial extracts did not differ between cyclic and pregnant ewes. However, the amount of 45-kDa OPN increased in uterine flushings from pregnant ewes between Days 11 and 17. Immunoreactive OPN was localized to luminal and glandular epithelia of both cyclic and pregnant ewes, and to trophectoderm of Day 19 conceptuses. The alpha(v) and beta(3) integrins were detected on Day 19 endometrium and conceptuses by immunofluorescence. It was reported that OPN mRNA increases in the uterine glands of pregnant ewes and secretion of OPN protein into the uterine lumen increases during early pregnancy. The present results demonstrate accumulation of OPN protein on endometrial LE and conceptus trophectoderm. Therefore, it is hypothesized that progesterone and/or interferon-tau induce expression, secretion and/or proteolytic cleavage of OPN by uterine epithelium. Secreted OPN is then available as ligand for alpha(v)beta(3) integrin heterodimer on trophectoderm and uterus to 1) stimulate changes in morphology of conceptus trophectoderm and 2) induce adhesion between luminal epithelium and trophectoderm essential for implantation and placentation.  相似文献   

19.
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.  相似文献   

20.
Secreted phosphoprotein one (SPP1, osteopontin) may regulate conceptus implantation and placentation. We investigated effects of progesterone (P(4)) and the conceptus on expression and localization of SPP1 in the ovine uterus. Steady-state levels of SPP1 mRNA in the endometrium of unilaterally pregnant ewes did not differ significantly between nongravid and gravid horns within their respective days of pregnancy; however, levels did increase as pregnancy progressed. SPP1 mRNA was detectable in the glandular epithelium (GE) of both nongravid and gravid horns via in situ hybridization. SPP1 protein was localized to the apical surface of the luminal epithelium of both nongravid and gravid uterine horns. Gravid horns exhibited extensive stromal SPP1 on Days 40 through 120, whereas SPP1 was markedly lower in the stroma of nongravid uterine horns through Day 80 of pregnancy. By Day 120, stromal expression of SPP1 between nongravid and gravid horns was similar. Long-term P(4) treatment of ovariectomized ewes induced SPP1 in the uterine stroma and GE. A bioactive 45-kDa SPP1 fragment was purified from uterine secretions and promoted ovine trophectoderm cell attachment in vitro. Interestingly, increased stromal cell expression of SPP1 was positively associated with vascularization as assessed by von Willebrand factor staining. Finally, ovine uterine artery endothelial cells produced SPP1 during outgrowth into three-dimensional collagen matrices in an in vitro model system that recapitulates angiogenesis. Collectively, P(4) induces and the conceptus further stimulates SPP1 in uterine GE and stroma, where SPP1 likely influences histotrophic and hematotrophic support of conceptus development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号