首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant cell growth is controlled by the balance between turgor pressure and the extensibility of the cell wall. Several distinct classes of wall polysaccharides and their interactions contribute to the architecture and the emergent features of the wall. As a result, remarkable tensile strength is achieved without relinquishing extensibility. The control of growth and development does not only require a precisely regulated biosynthesis of cell wall components, but also constant remodeling and modification after deposition of the polymers. This is especially evident given the fact that wall deposition and cell expansion are largely uncoupled. Pectins form a functionally and structurally diverse class of galacturonic acid-rich polysaccharides which can undergo abundant modification with a concomitant change in physicochemical properties. This review focuses on homogalacturonan demethylesterification catalyzed by the ubiquitous enzyme pectin methylesterase (PME) as a growth control module. Special attention is drawn to the recently discovered role of this process in primordial development in the shoot apical meristem.  相似文献   

2.
Wall-associated kinase 1 (WAK1) is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell walls. In order to characterize further the interaction of WAK1 with pectin, a 564 bp DNA sequence corresponding to amino acids 67-254 of the extracellular domain of WAK1 from Arabidopsis thaliana was cloned and expressed as a soluble recombinant peptide in yeast. Using enzyme-linked immunosorbent assays (ELISA), we show that peptide WAK(67-254) binds to polygalacturonic acid (PGA), oligogalacturonides, pectins extracted from A. thaliana cell walls and to structurally related alginates. Our results suggest that both ionic and steric interactions are required to match the relatively linear pectin backbone. Binding of WAK(67-254) to PGA, oligogalacturonides and alginates occurred only in the presence of calcium and in ionic conditions promoting the formation of calcium bridges between oligo-and polymers (also known as 'egg-boxes'). The conditions inhibiting the formation of calcium bridges (EDTA treatment, calcium substitution, high NaCl concentrations, depolymerization and methylesterification of pectins) also inhibited the binding of WAK(67-254) to calcium-induced egg-boxes. The relevance of this non-covalent link between WAK(67-254) and cell wall pectins is discussed in terms of cell elongation, cell differentiation and host-pathogen interactions.  相似文献   

3.
Stephen C. Fry 《Planta》1983,157(2):111-123
Primary cell walls from exponentially growing cell-suspension cultures of spinach contained ferulic acid and p-coumaric acid esterified with galactopyranose and arabinopyranose residues of polysaccharides. The feruloylated polysaccharides behaved in exactly the same way as total cell-wall pectin with respect to (1) extraction with chelating agents, (2) extraction by trans-elimination degradation, (3) extraction with mild acid, and (4) electrophoretic separation into acidic and neutral species. Partial digestion of cell walls with Driselase, under conditions which specifically inhibited galactanase and galactosidases yielded galactose-containing feruloyl tri- to pentasaccharides, in all of which the feruloyl group was on the non-reducing terminus. Larger feruloyl oligosaccharides were also found, some of which were acidic. Partial acid-hydrolysis of cell walls gave a homologous series of feruloyl oligosaccharides, probably with the structure Feruloyl-arabinopyranose-(arabinofuranose)n-arabinose where n=0–7. Evidence is presented that the arabinose chain was unbranched, with the feruloyl group on the nonreducing terminus. It is suggested that acidic and neutral pectins carry ferulic acid on the non-reducing termini of the neutral arabinose- and/or galactose-containing domains. The pectins carry approximately one feruloyl residue per 60 sugar residues. Possible rôles of feruloyl pectin in the regulation of cell expansion, in disease resistance, and in the initiation of lignification are discussed.  相似文献   

4.
Plant cell walls are the most abundant biomaterials on Earth and serve a multitude of purposes in human society. These complex extracellular matrices are mainly composed of polysaccharides, including cellulose, hemicelluloses, and pectins, which cannot be cytologically examined using conventional techniques. Click chemistry, which exploits a bio-orthogonal cycloaddition reaction between alkynyl and azido groups, has proven to be useful for the metabolic incorporation and detection of modified sugars in polysaccharides in animals, fungi, and bacteria, but its use to interrogate the biosynthesis or dynamics of plant cell walls has not been previously reported. Recently, we found that an alkynylated analog of fucose can be metabolically incorporated into Arabidopsis thaliana cell walls and click labeled with fluorescent probes, facilitating imaging of cell wall carbohydrates. Despite the presence of fucose in several classes of wall polysaccharides, fucose-alkyne was primarily incorporated into rhamnogalacturonan-I, a type of pectin. Using timecourse and pulse-labeling experiments, we observed the dynamics of pectin delivery and reorganization in expanding cell walls. The use of click chemistry to investigate plant cell wall architecture should help bridge the gap between biochemical characterization of isolated cell wall components and an understanding of how those components interact in intact cell walls.  相似文献   

5.
M. C. Jarvis 《Planta》1992,187(2):218-220
Near-isotropic stresses were generated within collenchyma cell walls of celery (Apium graveolens L.) by exchanging K+ for Ca2+ ions, varying the ionic strength and de-esterifying the pectic carboxyl groups, treatments that changed the free-charge density of the pectic polysaccharides. The collenchyma strands swelled radially with increasing free-charge density but there was very little longitudinal swelling. Depolymerising the pectins by -elimination also induced much more radial than longitudinal swelling. Supported by earlier work on Nitella, these results indicate that pectins control the interlamellar spacing in cell walls and hold them together across their thickness, particularly against turgor stresses tending to delaminate the walls at the cell corners.The author thanks J.S.G. Reid (Department of Biological Sciences, University of Stirling, UK) and M. Demarty (SCUEOR, University of Rouen, France) for critical comments.  相似文献   

6.
Growth of the plant cell wall   总被引:20,自引:0,他引:20  
Plant cells encase themselves within a complex polysaccharide wall, which constitutes the raw material that is used to manufacture textiles, paper, lumber, films, thickeners and other products. The plant cell wall is also the primary source of cellulose, the most abundant and useful biopolymer on the Earth. The cell wall not only strengthens the plant body, but also has key roles in plant growth, cell differentiation, intercellular communication, water movement and defence. Recent discoveries have uncovered how plant cells synthesize wall polysaccharides, assemble them into a strong fibrous network and regulate wall expansion during cell growth.  相似文献   

7.
Fan  Nana  Wen  Wuwu  Gao  Li  Lv  Aimin  Su  Liantai  Zhou  Peng  An  Yuan 《Plant and Soil》2022,477(1-2):357-371
Plant and Soil - Aluminum (Al) stress is a global problem that inhibits root growth and crop production in acidic soils. The inhibitive effect is greatly attributed to the reduction of cell wall...  相似文献   

8.
The primary cell wall of dicotyledonous plants can be considered as a concentrated polymer assembly, containing in particular polysaccharides among which cellulose and pectins are known to be the major components. In order to understand and control the textural quality of plant-derived foods, it is highly important to elucidate the rheological and microstructural properties of these components, individually and in mixture, in order to define their implication for structural and mechanical properties of primary plant cell wall. In this study, the rheological and microstructural properties of model systems composed of sugar-beet microfibrillated cellulose and HM pectins from various sources, with varied degrees of methylation and containing different amounts of neutral sugar side chains, were investigated. The influence of the presence of calcium and/or sodium ions and the biopolymer concentrations on the properties of the mixed systems were also studied. The characterizations of the mixed system, considered as a simplified model of primary plant cell wall, showed that whatever the structural characteristics of the pectins, the ionic conditions of the medium and the biopolymer concentrations, the gelation of the composite was mainly controlled by cellulose. Thus, the cellulose network would be the principal component governing the mechanical properties of the cell walls. However, the neutral sugar side chains of the pectins seem to play a part in the interactions with cellulose, as shown by the interesting viscoelastic properties of cellulose/apple HM pectins systems. The rigidity of cellulose/pectins composite was strongly influenced by the structural characteristics of pectins. The particular properties of primary plant cell walls would thus result from the solid viscoelastic properties of cellulose, its interactions with pectins according to their structural characteristics (implication of the neutral sugar side chains and the specific potential calcic interactions) and of the distribution of the components in separate phases.  相似文献   

9.
Brefeldin A (BFA) inhibits exocytosis but allows endocytosis, making it a valuable agent to identify molecules that recycle at cell peripheries. In plants, formation of large intracellular compartments in response to BFA treatment is a unique feature of some, but not all, cells. Here, we have analyzed assembly and distribution of BFA compartments in development- and tissue-specific contexts of growing maize (Zea mays) root apices. Surprisingly, these unique compartments formed only in meristematic cells of the root body. On the other hand, BFA compartments were absent from secretory cells of root cap periphery, metaxylem cells, and most elongating cells, all of which are active in exocytosis. We report that cell wall pectin epitopes counting rhamnogalacturonan II dimers cross-linked by borate diol diester, partially esterified (up to 40%) homogalacturonan pectins, and (1-->4)-beta-D-galactan side chains of rhamnogalacturonan I were internalized into BFA compartments. In contrast, Golgi-derived secretory (esterified up to 80%) homogalacturonan pectins localized to the cytoplasm in control cells and did not accumulate within characteristic BFA compartments. Latrunculin B-mediated depolymerization of F-actin inhibited internalization and accumulation of cell wall pectins within intracellular BFA compartments. Importantly, cold treatment and protoplasting prevented internalization of wall pectins into root cells upon BFA treatment. These observations suggest that cell wall pectins of meristematic maize root cells undergo rapid endocytosis in an F-actin-dependent manner.  相似文献   

10.
Watermelon [ Citrullus lanatus (Thunb.) Matsum and Nakai, cv. Charleston Gray] fruits were examined to determine the effect of ethylene on cell wall hydrolases. pectin degradation, and cell wall ultrastructure. Enzymic studies showed that activity of polygalacturonase (EC 3.2.1.15) increased in placental tissue following 1 day of ethylene treatment and was 10 times higher after 6 days of treatment. The increase in polygalacturonase activity was accompanied by the appearance in ethanol powders of low-molecular-weight pectic polymers and a decrease in total pectin. The enhanced enzyme activity and decrease in total pectins were observed only in fruits exposed to ethylene. Ultrastructural studies of ethylene-treated tissue revealed an early disintegration of the middle lamella. The onset of wall separation coincided with the first notable increase in polygalacturonase activity. Cell wall of untreated fruit showed no evidence of structural changes. The results indicate that initiation of enzymic activity and cell wall separation in response to ethylene are not characteristic phenomena of normal ripening and senescence in watermelon fruit.  相似文献   

11.
Arabinan and galactan side chains of sugar beet pectins are esterified by ferulic acid residues that can undergo in vivo oxidative reactions to form dehydrodiferulates. After acid and enzymatic degradation of sugar beet cell walls and fractionation of the solubilized products by hydrophobic interaction chromatography, three dehydrodiferulate-rich fractions were isolated. The structural identification of the different compounds present in these fractions was performed by electrospray-ion trap-mass spectrometry (before and after (18)O labeling) and high-performance anion-exchange chromatography. Several compounds contained solely Ara (terminal or alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was assigned in some cases to the O-2 and in others to the O-5 of non-reducing Ara residues. One compound contained Gal (beta-1-->4-linked-dimer), Ara (alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was unambiguously assigned to the O-2 of the non-reducing Ara residue and O-6 of the non-reducing Gal residue. These results provide direct evidence that pectic arabinans and galactans are covalently cross-linked (intra- or inter-molecularly) through dehydrodiferulates in sugar beet cell walls. Molecular modeling was used to compute and structurally characterize the low energy conformations of the isolated compounds. Interestingly, the conformations of the dehydrodiferulate-bridged arabinan and galactan fragments selected from an energetic criterion, evidenced very nice agreement with the experimental occurrence of the dehydrodiferulated pectins. The present work combines for the first time intensive mass spectrometry data and molecular modeling to give structural relevance of a molecular cohesion between rhamnogalacturonan fragments.  相似文献   

12.
Recently, we have reported that cell wall pectins are internalized into apical meristem root cells. In cells exposed to the fungal metabolite brefeldin A, all secretory pathways were inhibited, while endocytic pathways remained intact, resulting in accumulation of internalized cell wall pectins within brefeldin A-induced compartments. Here we report that, in addition to the already published cell wall epitopes, rhamnogalacturonan I and xyloglucans also undergo large-scale internalization into dividing root cells. Interestingly, multilamellar endosomes were identified as compartments internalizing arabinan cell wall pectins reactive to the 6D7 antibody, while large vacuole-like endosomes internalized homogalacturonans reactive to the 2F4 antibody. As all endosomes belong topographically to the exocellular space, cell wall pectins deposited in these "cell wall islands", enclosed by the plasma-membrane-derived membrane, are ideally suited to act as temporary stores for rapid formation of cell wall and generation of new plasma membrane. In accordance with this notion, we report that all cell wall pectins and xyloglucans that internalize into endosomes are highly enriched within cytokinetic cell plates and accumulate within brefeldin A compartments. On the other hand, only small amounts of the pectins reactive to the JIM7 antibody, which are produced in the Golgi apparatus, localize to cell plates and they do not accumulate within brefeldin A compartments. In conclusion, meristematic root cells have developed pathways for internalization and recycling of cell wall molecules which are relevant for plant-specific cytokinesis.  相似文献   

13.
Cell walls of glasswort (Salicornia ramosissima Woods), a halophytic Chenopodiaceae, prepared as alcohol-insoluble solids, were found to be rich in arabinose, galacturonic acid, glucose and proteins, and contained 0·7% ferulic acid and 3·8% acetic acid. Pectic and hemicellulosic polysaccharides were extracted by cyclohexanediaminotetraacetic acid, hot dilute acid, cold dilute alkali and concentrated alkali (twice), with yields of 2·9, 19·1, 4·7, 7·4 and 1·9% of the alcohol-insoluble solids, respectively. Protein-rich material precipitated upon dialysis. The dialysed fractions were fractionated by ion-exchange chromatography, and the main fractions were analysed by gel-filtration and glycosyl linkage analysis. The hot acid extract contained 46·2% arabinose and 28·9% galacturonic acid, with high degrees of methylation and acetylation (65 and 45, respectively). It could be fractionated into a low-molecular-weight arabinan rich in ferulic acid, and a pectic fraction still relatively rich in neutral sugars. The concentrated alkali extracts were rich in xylose (33·4 and 23·6%, respectively). They were separated by ion-exchange chromatography into a fucogalactoxyloglucan and a glucuronoarabinoxylan.  相似文献   

14.
By using immunofluorescence microscopy, we observed rapidly altered distribution patterns of cell wall pectins in meristematic cells of maize (Zea mays) and wheat (Triticum aestivum) root apices. This response was shown for homogalacturonan pectins characterized by a low level (up to 40%) of methylesterification and for rhamnogalacturonan II pectins cross-linked by a borate diol diester. Under boron deprivation, abundance of these pectins rapidly increased in cell walls, whereas their internalization was inhibited, as evidenced by a reduced and even blocked accumulation of these cell wall pectins within brefeldin A-induced compartments. In contrast, root cells of species sensitive to the boron deprivation, like zucchini (Cucurbita pepo) and alfalfa (Medicago sativa), do not internalize cell wall pectins into brefeldin A compartments and do not show accumulation of pectins in their cell walls under boron deprivation. For maize and wheat root apices, we favor an apoplastic target for the primary action of boron deprivation, which signals deeper into the cell via endocytosis-mediated pectin signaling along putative cell wall-plasma membrane-cytoskeleton continuum.  相似文献   

15.
Partially tree-ripened ripe fruit of peach (Prunus persica L.) were stored for 1-4 weeks at 5 degrees C and then ripened at 20 degrees C for 3 d to induce chilling injury. With increasing cold storage the incidence and severity of mealiness symptoms increased progressively, manifested as reduced quantities of free juice and internal flesh browning. Relative to juicy fruit, tissue of mealy fruit showed altered intercellular adhesion when examined by microscopy and, upon crushing, a higher proportion of cells remained intact and did not release cellular contents. Substantial alterations in the metabolism of cell wall polysaccharides were observed. Chelator-soluble polyuronides from mealy fruit were partially depolymerized during cold storage in a manner dissimilar to that in unripe or ripe juicy fruit, and were not depolymerized further during the ripening period. The solubility of these high molecular weight pectins remained low, and did not show the increase characteristic of juicy fruit. Furthermore, in mealy fruit the dramatic decline in the polymeric Ara content of base-soluble, matrix glycan-enriched fractions occurring during normal ripening was absent, indicating diminished disassembly of an arabinan-rich polysaccharide firmly attached to cellulose. A corresponding rise in the polymeric Ara content of the most soluble pectin fraction was also absent, as was a decline in the Gal content of this extract. The depolymerization of matrix glycans showed only minor differences between juicy and mealy fruit. After cold storage and ripening, the activities of endo-1,4-beta-glucanase (EC 3.2.1.4), endo-1,4-beta-mannanase (EC 3.2.1.78), beta-galactosidase (EC 3.2.1.23), alpha-arabinosidase (EC 3.2.1.55), and particularly endo-polygalacturonase (EC 3.2.1.15) were lower in mealy fruit than in juicy fruit, whereas pectin methylesterase activity (EC 3.1.1.11) was lower in slightly mealy and higher in very mealy fruit. The data suggest that cold storage affects the activities of numerous cell wall-modifying enzymes, with important consequences for pectin metabolism. These changes alter the properties of the primary wall and middle lamella, resulting in tissue breakage along enlarged air spaces, rather than across cells, which reduces the amount and availability of free juice upon tissue fragmentation.  相似文献   

16.
Albert W. Ruesink 《Planta》1969,89(2):95-107
Summary Avena coleoptile sections were treated with a fraction of a fungal filtrate containing a potent cellulase. Elongation rate was not affected although turgor pressure remained constant and wall extensibility was increased. These data show that the simple weakening of cell walls is not sufficient to promote growth and suggest that endogenous polysaccharidases are not the means by which the growth rate of the coleoptile is regulated.This work was supported in part by a predoctoral and a postdoctoral fellowship from NSF  相似文献   

17.
The FT-IR spectroscopic study of peach cell walls revealed the existence of two peaks absorbing at 1749 and 1630 cm−1 assigned, respectively, to the absorption of the esterified and non-esterified carboxyl groups of the pectin molecules. A linear relationship between the degree of esterification [(number of esterified carboxylic groups/number of total carboxylic groups)×100] and the ratio of the area underneath the peak at 1749 cm−1 over the sum of the areas underneath the two peaks, at 1749 and 1630 cm−1, was established using the FT-IR spectra of standard compounds. The use of the 2nd derivative and curve-fitting techniques allowed the elimination of spectral interferences from other cell wall components. The degree of esterification (D.E.) of pectins from Redhaven peaches immediately after harvest and during storage was evaluated from FT-IR data. During storage at 0°C, the D.E. remained practically constant up to 35 days. During storage at higher temperatures it decreased approaching a final value — the same for all temperatures. This value was reached after 22 days of storage at 5°C, 15 days at 15°C and after only 6 days at 20°C. The changes in the degree of esterification during storage correlated well to fruit firmness.  相似文献   

18.
Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the release of uronides by polygalacturonase from all pectinesterase treated cell walls was equivalent to polygalacturonase treatment of walls at the ripe stage. Uronide polymers released by polygalacturonase contain galacturonic acid, rhamnose, galactose, arabinose, xylose, and glucose. As a function of development, an increase in the release of galacturonic acid and rhamnose was observed (40 and 6% of these polymers at the mature green stage to 54 and 15% at the red ripe stage, respectively). The amount of galactose and arabinose released by exogenous polygalacturonase decreased during development (41 and 11% from walls of mature green fruit to 11 and 6% at the red ripe stage, respectively). Minor amounts of glucose and xylose released from the wall by exogenous polygalacturonase (4-7%) remained constant throughout fruit development.  相似文献   

19.
Amidated pectins and non-amidated pectins are transformed by saponification into amidated pectic acid and pectic acid. By heat treatment under alkaline conditions only amidated pectic acid is depolymerized and can be separated from the high-molecular pectic acid by gel-filtration. On this basis the composition of mixtures can be analysed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号