首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signaling processes in plants that initiate cellular responses to biotic and abiotic factors are believed to be located in the plasma membrane (PM). A better understanding of the PM proteome response to environmental stresses might lead to new strategies for improving stress-tolerant crops. A sub-cellular proteomics approach was applied to monitor changes in abundance of PM-associated protein in response to salinity, a key abiotic stress affecting rice productivity worldwide. Proteome was extracted from a root plasma-membrane-rich fraction of a rice salt tolerant variety, IR651, grown under saline and normal conditions. Comparative two-dimensional electrophoresis revealed that 24 proteins were differentially expressed in response to salt stress. From these, eight proteins were identified by mass spectrometry analysis. Most of the proteins identified are likely to be PM-associated and are known to be involved in several important mechanisms of plant adaptation to salt stress. These include regulation of PM pumps and channels, membrane structure, oxidative stress defense, signal transduction, protein folding, and the methyl cycle. To investigate the correlation between mRNA and protein level in response to salinity, we performed quantitative Real-Time PCR analysis of three genes that were salt responsive at the protein level, including 1,4-Benzoquinone reductase, a putative remorin and a hypersensitive induced response protein. No concordance was detected between the changes in levels of gene and protein expression. Our results indicate that the proteomics approach is suitable for expression analysis of membrane associated proteins under salt stress.  相似文献   

2.
The signaling processes in plants that initiate cellular responses to biotic and abiotic factors are believed to be located in the plasma membrane (PM). A better understanding of the PM proteome response to environmental stresses might lead to new strategies for improving stress-tolerant crops. A sub-cellular proteomics approach was applied to monitor changes in abundance of PM-associated protein in response to salinity, a key abiotic stress affecting rice productivity worldwide. Proteome was extracted from a root plasma-membrane-rich fraction of a rice salt tolerant variety, IR651, grown under saline and normal conditions. Comparative two-dimensional electrophoresis revealed that 24 proteins were differentially expressed in response to salt stress. From these, eight proteins were identified by mass spectrometry analysis. Most of the proteins identified are likely to be PM-associated and are known to be involved in several important mechanisms of plant adaptation to salt stress. These include regulation of PM pumps and channels, membrane structure, oxidative stress defense, signal transduction, protein folding, and the methyl cycle. To investigate the correlation between mRNA and protein level in response to salinity, we performed quantitative Real-Time PCR analysis of three genes that were salt responsive at the protein level, including 1,4-Benzoquinone reductase, a putative remorin and a hypersensitive induced response protein. No concordance was detected between the changes in levels of gene and protein expression. Our results indicate that the proteomics approach is suitable for expression analysis of membrane associated proteins under salt stress.  相似文献   

3.
RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection.  相似文献   

4.
Plasma membrane proteome in Arabidopsis and rice   总被引:1,自引:0,他引:1  
Komatsu S 《Proteomics》2008,8(19):4137-4145
Plant cells contain many membrane systems that are specially adapted to perform particular functions. In plant cells, the processing of signals that are involved in responses to biotic and abiotic stressors occurs in the plasma membrane. Therefore, characterization of the plasma membrane proteome can provide new insights into the functions of various plant membrane systems. Plant plasma membrane proteomics can also provide valuable information for plant-specific biological investigations. Despite recent advances in preparative and analytical techniques for plant plasma membrane proteins, the characterization of these proteins, particularly the hydrophobic ones, remains challenging. In this review, plant plasma membrane proteomics data compiled from the literature on Arabidopsis thaliana are presented. Initial attempts to determine the physiological significance of some proteins identified from plasma membrane proteomics in rice and other plants are also described from the results of our research.  相似文献   

5.
The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.  相似文献   

6.
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.  相似文献   

7.
Many cellular signaling and communication events take place at the plasma membrane and thus the characterization of the plasma membrane proteome has been a hot research area in the hopes of learning more about these processes. Membrane microdomains are large protein and lipid complexes found on the cell surface membrane, able to concentrate or recruit signaling molecules or factors. The first step of any organelle proteomics study is to get a pure and enriched protein sample yet this has always been problematic in membrane proteomics as it is virtually impossible to purify a specific membrane type to homogeneity. In this review, we summarize the biochemical and proteomic approaches that have been used recently in the isolation and identification of several membrane microdomains and non-typical membrane proteins.  相似文献   

8.
Pancreatic cancer is a lethal disease that is difficult to diagnose at early stages when curable treatments are effective. Biomarkers that can improve current pancreatic cancer detection would have great value in improving patient management and survival rate. A large scale quantitative proteomics study was performed to search for the plasma protein alterations associated with pancreatic cancer. The enormous complexity of the plasma proteome and the vast dynamic range of protein concentration therein present major challenges for quantitative global profiling of plasma. To address these challenges, multidimensional fractionation at both protein and peptide levels was applied to enhance the depth of proteomics analysis. Employing stringent criteria, more than 1300 proteins total were identified in plasma across 8-orders of magnitude in protein concentration. Differential proteins associated with pancreatic cancer were identified, and their relationship with the proteome of pancreatic tissue and pancreatic juice from our previous studies was discussed. A subgroup of differentially expressed proteins was selected for biomarker testing using an independent cohort of plasma and serum samples from well-diagnosed patients with pancreatic cancer, chronic pancreatitis, and nonpancreatic disease controls. Using ELISA methodology, the performance of each of these protein candidates was benchmarked against CA19-9, the current gold standard for a pancreatic cancer blood test. A composite marker of TIMP1 and ICAM1 demonstrate significantly better performance than CA19-9 in distinguishing pancreatic cancer from the nonpancreatic disease controls and chronic pancreatitis controls. In addition, protein AZGP1 was identified as a biomarker candidate for chronic pancreatitis. The discovery and technical challenges associated with plasma-based quantitative proteomics are discussed and may benefit the development of plasma proteomics technology in general. The protein candidates identified in this study provide a biomarker candidate pool for future investigations.  相似文献   

9.
Innate immunity is based on the recognition of cell-surface molecules of infecting agents. Microbial substances, such as peptidoglycan, lipopolysaccharide, and beta-1,3-glucans, produce functional responses in Drosophila hemocytes that contribute to innate immunity. We have used two-dimensional gel electrophoresis and MS to resolve lipopolysaccharide-induced changes in the protein profile of a Drosophila hemocytic cell line. We identified 24 intracellular proteins that were up- or down-regulated, or modified, in response to immune challenge. Several proteins with predicted immune functions, including lysosomal proteases, actin-binding/remodeling proteins, as well as proteins involved in cellular responses to oxidative stress, were affected by the immune assault. Intriguingly, a number of the proteins identified in this study have recently been implicated in phagocytosis in higher vertebrates. We suggest that phagocytosis is activated in Drosophila hemocytes by the presence of microbial substances, and that this activation constitutes an evolutionarily conserved arm of innate immunity. In addition, a number of proteins involved in calcium-regulated signaling, mRNA processing, and nuclear transport were affected, consistent with a possible role in reprogramming of gene expression. In conclusion, the present proteome analysis identified many proteins previously not linked to innate immunity, demonstrating that differential protein profiling of Drosophila hemocytes is a valuable tool for identification of new players in immune-related cellular processes.  相似文献   

10.
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.  相似文献   

11.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.  相似文献   

12.
Proteomics is a powerful technique for protein identification at large scales. A number of proteomics approaches have been developed to study the steady state composition of intracellular compartments. Here, we report a novel vectorial proteomics strategy to identify plasma membrane proteins that undergo retrograde transport to the trans-Golgi network (TGN). This strategy is based on the covalent modification of the plasma membrane proteome with a membrane impermeable benzylguanine derivative. Benzylguanine-tagged plasma membrane proteins that are subsequently targeted to the retrograde route are covalently captured by a TGN-localized SNAP-tagged fusion protein, which allows for their identification. The approach was validated step-by-step using a well explored retrograde cargo protein, the B-subunit of Shiga toxin. It was then extended to the proteomics format. Among other hits we found one of the historically first identified cargo proteins that undergo retrograde transport, which further validated our approach. Most of the other hits were kinases, receptors or transporters. In conclusion, we have pioneered a vectorial proteomics approach that complements traditional methods for the study of retrograde protein trafficking. This approach is of generic nature and could in principle be extended to other endocytic pathways.  相似文献   

13.
14.
The proteomics of plant cell membranes   总被引:1,自引:0,他引:1  
Membrane proteins are involved in many different functions depending on their location in the cell. Characterization of the membrane proteome can bring new insights to the function of different plant membrane systems and the subcellular compartments where the proteins are found. Plant membrane proteomics can also provide valuable information about plant-specific biological processes. Despite recent advances in the separation and techniques for the analysis of plant membrane proteins, characterization of these proteins, especially the hydrophobic ones, is still challenging. In this review, plant membrane proteomics data, compiled from the literature on Arabidopsis thaliana, are described. In addition, initial attempts towards determining the physiological significance of some proteins identified from membrane proteomics in rice are also described.  相似文献   

15.
Pathogen recognition by the plant innate immune system invokes a sophisticated signal transduction network that culminates in disease resistance. The Arabidopsis protein RIN4 is a well-known regulator of plant immunity. However, the molecular mechanisms by which RIN4 controls multiple immune responses have remained elusive. in our recently published study, we purified components of the RIN4 protein complex from A. thaliana and identified several novel RIN4-associated proteins.1 we found that one class of RIN4-associated proteins, the plasma membrane H+-ATPases AHA1 and AHA2, play a crucial role in resisting pathogen invasion. Plants use RIN4 to regulate H+-ATPase activity during immune responses, thereby controlling stomatal apertures during pathogen attack. Stomata were previously identified as active regulators of plant immune responses during pathogen invasion, but how the plant innate immune system coordinates this response was unknown.2,3 Our investigations have revealed a novel function of rin4 during pathogenesis. Here, we discuss the rin4-AHA1/2 interaction and highlight additional RIN4-associated proteins (RAPs) as well as speculate on their potential roles in plant innate immunity.Key words: RIN4, PAMP-triggered immunity, effector-triggered immunity, protein complex, innate immunity  相似文献   

16.
Lepidopteran larvae secrete saliva on plant tissues during feeding. Components in the saliva may aid in food digestion, whereas other components are recognized by plants as cues to elicit defense responses. Despite the ecological and economical importance of these plant-feeding insects, knowledge of their saliva composition is limited to a few species. In this study, we identified the salivary proteins of larvae of the fall armyworm (FAW), Spodoptera frugiperda; determined qualitative and quantitative differences in the salivary proteome of the two host races—corn and rice strains—of this insect; and identified changes in total protein concentration and relative protein abundance in the saliva of FAW larvae associated with different host plants. Quantitative proteomic analyses were performed using labeling with isobaric tags for relative and absolute quantification followed by liquid chromatography-tandem mass spectrometry. In total, 98 proteins were identified (>99% confidence) in the FAW saliva. These proteins were further categorized into five functional groups: proteins potentially involved in (1) plant defense regulation, (2) herbivore offense, (3) insect immunity, (4) detoxification, (5) digestion, and (6) other functions. Moreover, there were differences in the salivary proteome between the FAW strains that were identified by label-free proteomic analyses. Thirteen differentially identified proteins were present in each strain. There were also differences in the relative abundance of eleven salivary proteins between the two FAW host strains as well as differences within each strain associated with different diets. The total salivary protein concentration was also different for the two strains reared on different host plants. Based on these results, we conclude that the FAW saliva contains a complex mixture of proteins involved in different functions that are specific for each strain and its composition can change plastically in response to diet type.  相似文献   

17.
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel‐based and a LC MS/MS‐based proteomics method. Two‐day‐old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two‐phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel‐based proteomics, four and eight protein spots were identified as up‐ and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up‐ and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low‐abundance proteins could be identified by the LC MS/MS‐based method. Three homologues of plasma membrane H+‐ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H+‐ATPase protein.  相似文献   

18.
While the mechanisms that underpin maturation, capacitation, and sperm–egg interactions remain elusive it is known that these essential fertilisation events are driven by the protein complement of the sperm surface. Understanding these processes is critical to the regulation of animal reproduction, but few studies have attempted to define the full repertoire of sperm surface proteins in animals of agricultural importance. Recent developments in proteomics technologies, subcellular fractionation, and optimised solubilisation strategies have enhanced the potential for the comprehensive characterisation of the sperm surface proteome. Here we report the identification of 419 proteins from a mature bull sperm plasma membrane fraction. Protein domain enrichment analyses indicate that 67% of all the proteins identified may be membrane associated. A large number of the proteins identified are conserved between mammalian species and are reported to play key roles in sperm–egg communication, capacitation and fertility. The major functional pathways identified were related to protein catabolism (26S proteasome complex), chaperonin‐containing TCP‐1 (CCT) complex and fundamental metabolic processes such as glycolysis and energy production. We have also identified 118 predicted transmembrane proteins, some of which are implicated in cell adhesion, acrosomal exocytosis, vesicle transport and immunity and fertilisation events, while others have not been reported in mammalian LC‐MS‐derived sperm proteomes to date. Comparative proteomics and functional network analyses of these proteins expand our system's level of understanding of the bull sperm proteome and provide important clues toward finding the essential conserved function of these proteins.  相似文献   

19.
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.  相似文献   

20.
The epimorphic regeneration of zebrafish caudal fin is rapid and complete. We have analyzed the biomechanism of zebrafish caudal fin regeneration at various time points based on differential proteomics approaches. The spectrum of proteome changes caused by regeneration were analyzed among controls (0 h) and 1, 12, 24, 48, and 72 h postamputation involving quantitative differential proteomics analysis based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization and differential in-gel electrophoresis Orbitrap analysis. A total of 96 proteins were found differentially regulated between the control nonregenerating and regenerating tissues of different time points for having at least 1.5-fold changes. 90 proteins were identified as differentially regulated for regeneration based on differential in-gel electrophoresis analysis between the control and regenerating tissues. 35 proteins were characterized for its expression in all of the five regenerating time points against the control samples. The proteins identified and associated with regeneration were found to be directly allied with various molecular, biological, and cellular functions. Based on network pathway analysis, the identified proteome data set for regeneration was majorly associated in maintaining cellular structure and architecture. Also the proteins were found associated for the cytoskeleton remodeling pathway and cellular immune defense mechanism. The major proteins that were found differentially regulated during zebrafish caudal fin regeneration includes keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal α1 actin, and structural proteins. Annexin A1 was found to be exclusively undergoing phosphorylation during regeneration. The obtained differential proteome and the direct association of the various proteins might lead to a new understanding of the regeneration mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号