首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The inability to quantify large numbers of proteins in tissues and biofluids with high precision, sensitivity, and throughput is a major bottleneck in biomarker studies. We previously demonstrated that coupling immunoaffinity enrichment using anti-peptide antibodies (SISCAPA) to multiple reaction monitoring mass spectrometry (MRM-MS) produces Immunoprecipitation MRM-MS (immuno-MRM-MS) assays that can be multiplexed to quantify proteins in plasma with high sensitivity, specificity, and precision. Here we report the first systematic evaluation of the interlaboratory performance of multiplexed (8-plex) immuno-MRM-MS in three independent labs. A staged study was carried out in which the effect of each processing and analysis step on assay coefficient of variance, limit of detection, limit of quantification, and recovery was evaluated. Limits of detection were at or below 1 ng/ml for the assayed proteins in 30 μl of plasma. Assay reproducibility was acceptable for verification studies, with median intra- and interlaboratory coefficients of variance above the limit of quantification of 11% and <14%, respectively, for the entire immuno-MRM-MS assay process, including enzymatic digestion of plasma. Trypsin digestion and its requisite sample handling contributed the most to assay variability and reduced the recovery of target peptides from digested proteins. Using a stable isotope-labeled protein as an internal standard instead of stable isotope-labeled peptides to account for losses in the digestion process nearly doubled assay accuracy for this while improving assay precision 5%. Our results demonstrate that multiplexed immuno-MRM-MS can be made reproducible across independent laboratories and has the potential to be adopted widely for assaying proteins in matrices as complex as plasma.  相似文献   

2.
Access to a wider range of quantitative protein assays would significantly impact the number and use of tissue markers in guiding disease treatment. Quantitative mass spectrometry-based peptide and protein assays, such as immuno-SRM assays, have seen tremendous growth in recent years in application to protein quantification in biological fluids such as plasma or urine. Here, we extend the capability of the technique by demonstrating the application of a multiplexed immuno-SRM assay for quantification of estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) levels in cell line lysates and human surgical specimens. The performance of the assay was characterized using peptide response curves, with linear ranges covering approximately four orders of magnitude and limits of detection in the low fmol/mg lysate range. Reproducibility was acceptable with median coefficients of variation of approximately 10%. We applied the assay to measurements of ER and HER2 in well-characterized cell line lysates with good discernment based on ER/HER2 status. Finally, the proteins were measured in surgically resected breast cancers, and the results showed good correlation with ER/HER2 status determined by clinical assays. This is the first implementation of the peptide-based immuno-SRM assay technology in cell lysates and human surgical specimens.  相似文献   

3.
Fourier transform-all reaction monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ions against every fragmentation spectrum across the entire acquisition. A dot product score is calculated against each spectrum to generate a score chromatogram used for both identification and quantification. Chromatographic elution profile characteristics are not used to cluster precursor peptide signals to their respective fragment ions. FT-ARM identifications are demonstrated to be complementary to conventional data-dependent shotgun analysis, especially in cases where the data-dependent method fails because of fragmenting multiple overlapping precursors. The sensitivity, robustness, and specificity of FT-ARM quantification are shown to be analogous to selected reaction monitoring-based peptide quantification with the added benefit of minimal assay development. Thus, FT-ARM is demonstrated to be a novel and complementary data acquisition, identification, and quantification method for the large scale analysis of peptides.  相似文献   

4.
S-nitrosylation, the formation of S-nitrosothiol (SNO), is an important reversible thiol oxidation event that has been increasingly recognized for its role in cell signaling. Although many proteins susceptible to S-nitrosylation have been reported, site-specific identification of physiologically relevant SNO modifications remains an analytical challenge because of the low abundance and labile nature of this modification. Herein we present further improvement and optimization of the recently reported resin-assisted cysteinyl peptide enrichment protocol for SNO identification and its application to mouse skeletal muscle to identify specific cysteine sites sensitive to S-nitrosylation by a quantitative reactivity profiling strategy. Our results indicate that the protein- and peptide-level enrichment protocols provide comparable specificity and coverage of SNO-peptide identifications. S-nitrosylation reactivity profiling was performed by quantitatively comparing the site-specific SNO modification levels in samples treated with S-nitrosoglutathione, an NO donor, at two different concentrations (i.e., 10 and 100 μM). The reactivity profiling experiments led to the identification of 488 SNO-modified sites from 197 proteins with specificity of ∼95% at the unique peptide level, i.e., ∼95% of enriched peptides contain cysteine residues as the originally SNO-modified sites. Among these sites, 281 from 145 proteins were considered more sensitive to S-nitrosylation based on the ratios of observed SNO levels between the two treatments. These SNO-sensitive sites are more likely to be physiologically relevant. Many of the SNO-sensitive proteins are localized in mitochondria, contractile fiber, and actin cytoskeleton, suggesting the susceptibility of these subcellular compartments to redox regulation. Moreover, these observed SNO-sensitive proteins are primarily involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis/gluconeogenesis, glutathione metabolism, and fatty acid metabolism, suggesting the importance of redox regulation in muscle metabolism and insulin action.  相似文献   

5.
In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.  相似文献   

6.
Ukena K  Iwakoshi E  Minakata H  Tsutsui K 《FEBS letters》2002,512(1-3):255-258
Recently, cDNAs encoding novel RFamide-related peptides (RFRPs) have been reported in the mammalian brains by a gene database search and the deduced RFRPs have been suggested to participate in neuroendocrine and pain mechanisms in the rat. Two peptides have been predicted to be encoded in the cDNA of rodent RFRPs. To assess precise functions of rodent RFRPs in the brain, in the present study we identified a naturally occurring RFRP in the rat hypothalamus by immunoaffinity purification combined with mass spectrometry (MS). The affinity chromatography showed that the rat hypothalamus contained RFRP-like immunoreactivity. The immunoreactive material was analyzed by a nanoflow electrospray ionization time-of-flight MS followed by tandem MS analysis. The mass peak corresponding to octadecapeptide was detected at 1010.54 m/z ([M+2H](2+)) and its sequence, ANMEAGTMSHFPSLPQRF-NH(2), was revealed by the fragmentation, showing a mature form encoded in the cDNA sequence of RFRPs. The identified endogenous RFRP will aid not only in defining its physiological roles but also facilitate the development of its agonists and antagonists in the rodent brain.  相似文献   

7.
MOTIVATION: Single Nucleotide Polymorphisms (SNPs) are believed to contribute strongly to the genetic variability in living beings, and SNP and mutation discovery are of great interest in today's Life Sciences. A comparatively new method to discover such polymorphisms is based on base-specific cleavage, where resulting cleavage products are analyzed by mass spectrometry (MS). One particular advantage of this method is the possibility of multiplexing the biochemical reactions, i.e. examining multiple genomic regions in parallel. Simulations can help estimating the performance of a method for polymorphism discovery, and allow us to evaluate the influence of method parameters on the discovery rate, and also to investigate whether the method is well suited for a certain genomic region. RESULTS: We show how to efficiently conduct such simulations for polymorphism discovery using base-specific cleavage and MS. Simulating multiplexed polymorphism discovery leads us to the problem of uniformly drawing a multiplex. Given a multiset of natural numbers we want to uniformly draw a subset of fixed cardinality so that the elements sum up to some fixed total length. We show how to enumerate multiplex layouts using dynamic programming, which allows us to uniformly draw a multiplex.  相似文献   

8.
A rapid, sensitive, robust and specific method was developed for the determination and quantitation of felodipine, in human blood plasma by liquid chromatography coupled with tandem mass spectrometry using nimodipine as internal standard. Felodipine was extracted from 0.5 mL human plasma by use of a liquid/liquid procedure using diethyl ether/hexane (80/20, v/v) as eluent. The method included a chromatographic run of 5 min using a C(18) analytical column (100 mm x 4.6 mm i.d.) and the calibration curve was linear over the range from 0.02 to 10 ng mL(-1) (r(2) > 0.994). The between-run precision, determined as relative standard deviation of replicate quality controls, was 5.7% (0.06 ng mL(-1)), 7.1% (0.6 ng mL(-1)) and 6.8% (7.5 ng mL(-1)). The between-run accuracy was +/- 0.0, 2.1 and 3.1% for the above-mentioned concentrations, respectively.  相似文献   

9.
Yan F  Che FY  Nieves E  Weiss LM  Angeletti RH  Fiser A 《Proteomics》2011,11(20):4109-4115
MS analysis of cross-linked peptides can be used to probe protein contact sites in macromolecular complexes. We have developed a photo-cleavable cross-linker that enhances peptide enrichment, improving the signal-to-noise ratio of the cross-linked peptides in mass spectrometry analysis. This cross-linker utilizes nitro-benzyl alcohol group that can be cleaved by UV irradiation and is stable during the multiple washing steps used for peptide enrichment. The enrichment method utilizes a cross-linker that aids in eliminating contamination resulting from protein-based retrieval systems, and thus, facilitates the identification of cross-linked peptides. Homodimeric pilM protein from Pseudomonas aeruginosa 2192 (pilM) was investigated to test the specificity and experimental conditions. As predicted, the known pair of lysine side chains within 14?? was cross-linked. An unexpected cross-link involving the protein's amino terminus was also detected. This is consistent with the predicted mobility of the amino terminus that may bring the amino groups within 19?? of one another in solution. These technical improvements allow this method to be used for investigating protein-protein interactions in complex biological samples.  相似文献   

10.
A rapid, simple and sensitive HPLC–ESI–MS/MS method was developed for the simultaneous determination of capsaicin and dihydrocapsaicin in rat plasma. Plasma samples containing capsaicin, dihydrocapsaicin and phenacetin (internal standard) were prepared based on a simple protein precipitation by the addition of two volumes of acetonitrile. The analytes and internal standard were separated on a Zorbax SB-C18 column (3.5 μm, 2.1 mm × 100 mm) with mobile phase of acetonitrile/water (55:45, v/v) containing 0.1% formic acid (v/v) at a flow rate of 0.2 mL/min with an operating temperature of 25 °C. Quantification was performed on a triple quadrupole mass spectrometer equipped with electrospray ionization (ESI) source by selected reaction monitoring (SRM) of the transitions at m/z 306–137 for capsaicin, m/z 308–137 for dihydrocapsaicin and m/z 180–110 for the IS. Linear detection responses were obtained for capsaicin and dihydrocapsaicin ranging from 1 to 500 ng/mL and the lower limits of quantitation (LLOQs) for the two compounds were 1 ng/mL. The intra- and inter-day precisions (R.S.D.%) were within 9.79% for the two analytes, while the deviations of assay accuracies were within ±10.63%. The average recoveries of the analytes were greater than 89.88%. The analytes were proved to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to the pharmacokinetic studies of capsaicin and dihydrocapsaicin in rats after subcutaneous administration of capsaicin (natural, containing 65% capsaicin and 35% dihydrocapsaicin).  相似文献   

11.
The need for urgent diagnoses has propelled the development of automated analyses that can be performed in a short time at reasonable cost. One such method is immunoaffinity capillary electrophoresis. This emerging hybrid technology employs two powerful techniques coupled on-line for the direct and rapid determination of analytes present in biological fluids. The first technique, immunoaffinity, is used for the selective extraction of a molecule present in a complex matrix, utilizing a microscale-format chamber affinity device. An analyte (affinity target) present in serum or urine is captured by an immobilized molecular recognition antibody molecule (affinity ligand) bound to a solid support constituent (glass beads or an appropriate porous structure) of a microchamber affinity device. The second technique, capillary electrophoresis, is used for the high-resolution analytical separation of the purified and concentrated affinity target material after elution from the microchamber affinity device. In this work, immunoaffinity capillary electrophoresis was developed for the identification and characterization of a single constituent of a complex matrix. Immunoreactive gonadotropin-releasing hormone was determined in serum and urine specimens derived from a normal individual and from a patient suffering from benign prostatic hyperplasia. Furthermore, the on-line immuno-separation system was coupled in tandem to mass spectrometry to obtain molecular mass information of the affinity isolated and CE separated neuropeptide. This hybrid immuno-analytical technology is simple, rapid, selective and sensitive. In addition, an attempt was also made to characterize other urinary constituents by CE–MS that may lead to marker activity in the urine of the diseased subject. The hyphenation of analytical techniques has proved valuable in enhancing their individual features. The future of bioanalysis using miniaturized affinity systems is discussed in this paper.  相似文献   

12.
We have explored a general approach for the determination of absolute amounts and the relative stoichiometry of proteins in a mixture using fluorescence and mass spectrometry. We engineered a gene to express green fluorescent protein (GFP) with a synthetic fusion protein (GAB-GFP) in Escherichia coli to function as a spectroscopic standard for the quantification of an analogous stable isotope-labeled, non-fluorescent fusion protein (GAB*) and for the quantification and stoichiometric analysis of purified transducin, a heterotrimeric G-protein complex. Both GAB-GFP and GAB* contain concatenated sequences of specific proteotypic peptides that are derived from the alpha, beta, and gamma protein subunits of transducin and that are each flanked by spacer regions that maintain the native proteolytic properties for these peptide fragments. Spectroscopic quantification of GAB-GFP provided a molar scale for mass spectrometric ratios from tryptic peptides of GAB* and defined molar responses for mass spectrometric signal intensities from a purified transducin complex. The stoichiometry of transducin subunits alpha, beta, and gamma was measured to be 1:1.1:1.15 over a 5-fold range of labeled internal standard with a relative standard deviation of 9%. Fusing a unique genetically coded spectroscopic signal element with concatenated proteotypic peptides provides a powerful method to accurately quantify and determine the relative stoichiometry of multiple proteins present in complexes or mixtures that cannot be readily assessed using classical gravimetric, enzymatic, or antibody-based technologies.  相似文献   

13.
Untargeted metabolomics aims to gather information on as many metabolites as possible in biological systems by taking into account all information present in the data sets. Here we describe a detailed protocol for large-scale untargeted metabolomics of plant tissues, based on reversed phase liquid chromatography coupled to high-resolution mass spectrometry (LC-QTOF MS) of aqueous methanol extracts. Dedicated software, MetAlign, is used for automated baseline correction and alignment of all extracted mass peaks across all samples, producing detailed information on the relative abundance of thousands of mass signals representing hundreds of metabolites. Subsequent statistics and bioinformatics tools can be used to provide a detailed view on the differences and similarities between (groups of) samples or to link metabolomics data to other systems biology information, genetic markers and/or specific quality parameters. The complete procedure from metabolite extraction to assembly of a data matrix with aligned mass signal intensities takes about 6 days for 50 samples.  相似文献   

14.
Wu J  Pungaliya P  Kraynov E  Bates B 《Biomarkers》2012,17(2):125-133
The expression patterns and functional roles of three osteopontin splice variants (OPNa, b, and c) in cancer metastasis and progression are not well understood due to the lack of reliable assays to differentiate the isoforms. We have developed a mass spectrometric method to quantify OPN isoforms in human plasma. The method is based on the immunocapture of all OPN isoforms, followed by MRM-MS analysis of isoform-specific tryptic peptides. We were able to simultaneously identify and quantify all three isoforms in the plasma of 10 healthy individuals and 10 non-small cell lung cancer (NSCLC) patients. Our results show that none of the OPN splice variants is cancer specific. However, OPNa, the major isoform in healthy and NSCLC plasma, is substantially elevated in NSCLC patients, whereas OPNb and OPNc are at equivalent levels in two populations.  相似文献   

15.
Proteomic studies of post-translational modifications by metal affinity or antibody-based methods often employ data-dependent analysis, providing rich data sets that consist of randomly sampled identified peptides because of the dynamic response of the mass spectrometer. This can complicate the primary goal of programs for drug development, mutational analysis, and kinase profiling studies, which is to monitor how multiple nodes of known, critical signaling pathways are affected by a variety of treatment conditions. Cell Signaling Technology has developed an immunoaffinity-based LC-MS/MS method called PTMScan Direct for multiplexed analysis of these important signaling proteins. PTMScan Direct enables the identification and quantification of hundreds of peptides derived from specific proteins in signaling pathways or specific protein types. Cell lines, tissues, or xenografts can be used as starting material. PTMScan Direct is compatible with both SILAC and label-free quantification. Current PTMScan Direct reagents target key nodes of many signaling pathways (PTMScan Direct: Multipathway), serine/threonine kinases, tyrosine kinases, and the Akt/PI3K pathway. Validation of each reagent includes score filtering of MS/MS assignments, filtering by identification of peptides derived from expected targets, identification of peptides homologous to expected targets, minimum signal intensity of peptide ions, and dependence upon the presence of the reagent itself compared with a negative control. The Multipathway reagent was used to study sensitivity of human cancer cell lines to receptor tyrosine kinase inhibitors and showed consistent results with previously published studies. The Ser/Thr kinase reagent was used to compare relative levels of kinase-derived phosphopeptides in mouse liver, brain, and embryo, showing tissue-specific activity of many kinases including Akt and PKC family members. PTMScan Direct will be a powerful quantitative method for elucidation of changes in signaling in a wide array of experimental systems, combining the specificity of traditional biochemical methods with the high number of data points and dynamic range of proteomic methods.  相似文献   

16.
The hyphenation of miniaturized separation techniques like chip electrophoresis or chip chromatography to mass spectrometry (MS) is a highly active research area in modern separation science. Such methods are particularly attractive for comprehensive analysis of complex biological samples. They can handle extremely low sample amounts, with low solvent consumption. Furthermore they provide unsurpassed analysis speed together with the prospect of integrating several functional elements on a single multifunctional platform. In this article we review the latest developments in this emerging field of technology and summarize recent trends to face current and future challenges in chip-based biochemical analysis.  相似文献   

17.
Characterisation of blood serum peptides can provide valuable information on physiological and pathological processes. However, the analysis of raw serum samples by MS results in the identification of a limited number of peptides. In order to improve sensitivity, many peptide enrichment methods have been proposed during the last ten years. Here, we present a comparison of fractionation methods aimed to simplify analysis of small proteins and peptides in blood serum, one of the most promising sources of putative biomarkers. Specifically, three methods based on ultrafiltration, differential precipitation, and peptide ligand libraries (ProteoMiner) were evaluated for the enrichment of peptides and low molecular weight proteins, as demonstrated by Tricine SDS-PAGE and subsequent LC-MS/MS (GeLC-MS/MS). As a result, differential solubilisation (DS) allowed the identification of the highest number of peptides. Moreover, the DS method enabled also the quantitative comparison of samples, producing fundamental information in biomarker discovery approaches.  相似文献   

18.
Although differences in protein staining intensity can often be visualized by difference gel electrophoresis, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. We present a protocol for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using in-gel stable isotope labeling. In this protocol protein extracts from any source treated under two experimental conditions are resolved in two separate lanes by gel electrophoresis. Parallel gel regions of interest are reacted separately with either light or heavy isotope-labeled reagents, and the gel slices are then combined and digested with proteases. The resulting peptides are then analyzed by liquid chromatography/mass spectrometry (LC/MS) to determine relative abundance of light- and heavy-isotope lysine-containing peptide pairs and analyzed by LC/MS/MS for identification of sequence and modifications. This protocol should take approximately 24-26 h to complete, including the incubation time for proteolytic digestion. Additional time will be needed for data analysis and interpretation.  相似文献   

19.
Immunoaffinity chromatography (IAC), mass spectrometry and especially tandem mass spectrometry (MS/MS) represent the most efficient and reliable analytical techniques for specific isolation, unequivocal identification and accurate quantification of numerous natural and synthetic substances in biological samples. This review article focuses on the combined use of these outstanding methodologies in basic and clinical research and in life sciences for the quantitative analysis of low- and high-molecular mass biomarkers, drugs and toxins in urine, plasma or serum samples, in tissue and other biologicals systems published in the last decade. The analytes discussed in some detail include the biomarkers of oxidative stress 15(S)-8-iso-prostaglandin F {15(S)-8-iso-PGF} and 3-nitrotyrosine, the major urinary metabolite of the lipid mediators cysteinyl leukotrienes, i.e., the leukotriene E4 (LTE4), melatonin, and the major collagen type II neoepitope peptide in human urine.  相似文献   

20.
A rapid, sensitive and specific method for quantifying the aromatase inhibitor (anastrozole) in human plasma using dexchlorpheniramine as the internal standard (I.S.) is described herein. The analyte and the I.S. were extracted from 200 microl of human plasma by liquid-liquid extraction using a mixture of diethyl ether:dichloromethane (70:30, v/v) solution. Extracts were removed and dried in the organic phase then reconstituted with 200 microl of acetonitrile:water (50:50; v/v). The extracts were analyzed by high performance liquid chromatography coupled with photospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed isocratically on a Genesis, C18 4 microm analytical column (100 mm x 2.1mm i.d.). The method had a chromatographic run time of 2.5 min and a linear calibration curve ranging from 0.05-10 ng ml(-1). The limit of quantification (LOQ) was 0.05 ng ml(-1). This HPLC-MS-MS procedure was used to assess pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号