首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ~10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ~24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus.  相似文献   

2.
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.  相似文献   

3.
Monkeypox virus (MPXV) is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV) related to MPXV) and cessation of routine smallpox vaccination (with the live OPXV vaccinia), there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively). Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.  相似文献   

4.
Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic disease endemic mainly in West and Central Africa. As of 27 September 2022, human monkeypox has occurred in more than 100 countries (mostly in non-endemic regions) and caused over 66,000 confirmed cases, which differs from previous epidemics that mainly affected African countries. Due to the increasing number of confirmed cases worldwide, the World Health Organization (WHO) has declared the monkeypox outbreak as a Public Health Emergency of International Concern on July 23, 2022. The international outbreak of human monkeypox represents a novel route of transmission for MPXV, with genital lesions as the primary infection, and the emergence of monkeypox in the current outbreak is also new, as novel variants emerge. Clinical physicians and scientists should be aware of this emerging situation, which presents a different scenario from previous outbreaks. In this review, we will discuss the molecular virology, evasion of antiviral immunity, epidemiology, evolution, and detection of MPXV, as well as prophylaxis and treatment strategies for monkeypox. This review also emphasizes the integration of relevant epidemiological data with genomic surveillance data to obtain real-time data, which could formulate prevention and control measures to curb this outbreak.  相似文献   

5.
Although monkeypox virus (MPXV) studies in wild rodents and non-human primates have generated important knowledge regarding MPXV pathogenesis and inferences about disease transmission, it might be easier to dissect the importance of virulence factors and correlates of protection to MPXV in an inbred mouse model. Herein, we compared the two clades of MPXV via two routes of infection in the BALB/c and C57BL/6 inbred mice strains. Our studies show that similar to previous animal studies, the Congo Basin strain of MPXV was more virulent than West African MPXV in both mouse strains as evidenced by clinical signs. Although animals did not develop lesions as seen in human MPX infections, localized signs were apparent with the foot pad route of inoculation, primarily in the form of edema at the site of inoculation; while the Congo Basin intranasal route of infection led to generalized symptoms, primarily weight loss. We have determined that future studies with MPXV and laboratory mice would be very beneficial in understanding the pathogenesis of MPXV, in particular if used in in vivo imaging studies. Although this mouse model may not suffice as a model of human MPX disease, with an appropriate inbred mouse model, we can unravel many unknown aspects of MPX pathogenesis, including virulence factors, disease progression in rodent hosts, and viral shedding from infected animals. In addition, such a model can be utilized to test antivirals and the next generation of orthopoxvirus vaccines for their ability to alter the course of disease.  相似文献   

6.
The 2003 monkeypox virus (MPXV) outbreak and subsequent laboratory studies demonstrated that the black-tailed prairie dog is susceptible to MPXV infection and that the ensuing rash illness is similar to human systemic orthopoxvirus (OPXV) infection, including a 7- to 9-day incubation period and, likely, in some cases a respiratory route of infection; these features distinguish this model from others. The need for safe and efficacious vaccines for OPVX in areas where it is endemic or epidemic is important to protect an increasingly OPXV-naïve population. In this study, we tested current and investigational smallpox vaccines for safety, induction of anti-OPXV antibodies, and protection against mortality and morbidity in two MPXV challenges. None of the smallpox vaccines caused illness in this model, and all vaccinated animals showed anti-OPXV antibody responses and neutralizing antibody. We tested vaccine efficacy by challenging the animals with 105 or 106 PFU Congo Basin MPXV 30 days postvaccination and evaluating morbidity and mortality. Our results demonstrated that vaccination with either Dryvax or Acambis2000 protected the animals from death with no rash illness. Vaccination with IMVAMUNE also protected the animals from death, albeit with (modified) rash illness. Based on the results of this study, we believe prairie dogs offer a novel and potentially useful small animal model for the safety and efficacy testing of smallpox vaccines in pre- and postexposure vaccine testing, which is important for public health planning.  相似文献   

7.
Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species’ competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108 pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.  相似文献   

8.
Phosphorylation plays a key role in regulating many signaling pathways. Although studies investigating the phosphorylated forms of signaling pathways are now commonplace, global analysis of protein phosphorylation and kinase activity has lagged behind genomics and proteomics. We have used a kinomics approach to study the effect of virus infection on host cell signaling in infected guinea pigs. Delineating the host responses which lead to clearance of a pathogen requires the use of a matched, comparative model system. We have used two passage variants of the arenavirus Pichinde, used as a biosafety level 2 model of Lassa fever virus as it produces similar pathologies in guinea pigs and humans, to compare the host cell responses between infections which lead to either a mild, self-limiting infection or lethal disease. Using this model, we can begin to understand the differences in signaling events which give rise to these markedly different outcomes. By contextualizing these data using pathway analysis, we have identified key differences in cellular signaling matrices. By comparing these differentially involved networks, we have identified a number of key signaling "nodes" which show differential phosphorylations between mild and lethal infections. We believe that these nodes provide potential targets for the development of antiviral therapies by acting at the level of the host response rather than by directly targeting viral proteins.  相似文献   

9.
Infection with monkeypox virus (MPXV) causes disease manifestations in humans that are similar, although usually less severe, than those of smallpox. Since routine vaccination for smallpox ceased more than 30 years ago, there is concern that MPXV could be used for bioterrorism. Thus, there is a need to develop animal models to study MPXV infection. Accordingly, we screened 38 inbred mouse strains for susceptibility to MPXV. Three highly susceptible wild-derived inbred strains were identified, of which CAST/EiJ was further developed as a model. Using an intranasal route of infection with an isolate of the Congo Basin clade of MPXV, CAST/EiJ mice exhibited weight loss, morbidity, and death in a dose-dependent manner with a calculated 50% lethal dose (LD50) of 680 PFU, whereas there were no deaths of BALB/c mice at a 10,000-fold higher dose. CAST/EiJ mice exhibited greater MPXV sensitivity when infected via the intraperitoneal route, with an LD50 of 14 PFU. Both routes resulted in MPXV replication in the lung, spleen, and liver. Intranasal infection with an isolate of the less-pathogenic West African clade yielded an LD50 of 7,600 PFU. The immune competence of CAST/EiJ mice was established by immunization with vaccinia virus, which induced antigen-specific T- and B-lymphocyte responses and fully protected mice from lethal doses of MPXV. The new mouse model has the following advantages for studying pathogenesis of MPXV, as well as for evaluation of potential vaccines and therapeutics: relative sensitivity to MPXV through multiple routes, genetic homogeneity, available immunological reagents, and commercial production.Monkeypox virus (MPXV), a member of the orthopoxvirus genus of the Chordopoxvirinae subfamily of the Poxviridae, was isolated in 1958 from lesions in a cynomolgous monkey that had been imported from Africa (27). The first human infections with MPXV were reported in 1972, and since then more than two thousand cases have been recorded, most in the Democratic Republic of the Congo and lesser numbers in West African countries (reviewed by Parker et al. [18]). The mortality from human monkeypox in the Congo is estimated to be 10% of infected individuals with clinical symptoms that mimic smallpox, which is caused by another member of the orthopoxvirus genus: variola virus. However, whereas the host range of variola virus is restricted to humans, serological studies indicate that MPXV naturally infects a large number of animal species, particularly squirrels and nonhuman primates. The sporadic occurrence of human monkeypox is thought to arise from close proximity and handling of infected animals. In this respect, a self-limited outbreak in the United States was traced to a shipment of West African rodents (19). Although monkeypox is a minor public health problem when compared historically to smallpox, the potential for expansion of the MPXV host range and adaptations to enhance human transmission make it prudent to continue careful surveillance. Moreover, the potential use of MPXV for bioterrorism has led to its inclusion as a select agent in the United States (http://www.selectagents.gov).Animal models are crucial for studying virus pathogenesis, and MXPV is no exception. Ground squirrels (22, 26), black-tailed prairie dogs (9, 11, 13, 30), and African dormice (23) are highly susceptible to MPXV. However, as experimental systems, each has limitations with regard to unavailability of commercial breeding, genetic heterogeneity and absence of immunological and other reagents. Laboratory mice, including BALB/c, C57BL/6, and several other mouse strains tested, were found to be resistant to MPXV disease unless impaired in innate or acquired immunity (10, 17, 24). In the present study, we tested a large group of distinct inbred strains of mice chosen for genetic diversity, inclusion of classical and wild-derived strains, and commercial availability. Of 38 inbred mouse strains tested, three wild-derived strains were highly susceptible to MPXV. One of these, CAST/EiJ, was further characterized with regard to MPXV strain sensitivity, route of inoculation, virus dissemination, immune response, and protection by vaccination and drug treatment.  相似文献   

10.
Smallpox caused by the variola virus (VARV) was one of the greatest infectious killers of mankind. Historical records trace back smallpox for at least a millennium while phylogenetic analysis dated the ancestor of VARV circulating in the 20th century into the 19th century. The discrepancy was solved by the detection of distinct VARV sequences first in 17th-century mummies and then in human skeletons dated to the 7th century. The historical records noted marked variability in VARV virulence which scientists tentatively associated with gene losses occurring when broad-host poxviruses narrow their host range to a single host. VARV split from camel and gerbil poxviruses and had no animal reservoir, a prerequisite for its eradication led by WHO. The search for residual pockets of VARV led to the discovery of the monkeypox virus (MPXV); followed by the detection of endemic smallpox-like monkeypox (mpox) disease in Africa. Mpox is caused by less virulent clade 2 MPXV in West Africa and more virulent clade 1 MPXV in Central Africa. Exported clade 2 mpox cases associated with the pet animal trade were observed in 2003 in the USA. In 2022 a world-wide mpox epidemic infecting more than 80,000 people was noted, peaking in August 2022 although waning rapidly. The cases displayed particular epidemiological characteristics affecting nearly exclusively young men having sex with men (MSM). In contrast, mpox in Africa mostly affects children by non-sexual transmission routes possibly from uncharacterized animal reservoirs. While African children show a classical smallpox picture, MSM mpox cases show few mostly anogenital lesions, low-hospitalization rates and 140 fatal cases worldwide. MPXV strains from North America and Europe are closely related, derived from clade 2 African MPXV. Distinct transmission mechanisms are more likely causes for the epidemiological and clinical differences between endemic African cases and the 2022 epidemic cases than viral traits.  相似文献   

11.
The recent observation of a surge in human monkeypox in the Democratic Republic of the Congo (DRC) prompts the question of whether cessation of smallpox vaccination is driving the phenomenon, and if so, why is re-emergence not universal throughout the historic geographic range of the virus? Research addressing the virus's mechanisms for immune evasion and induction, as well as that directed at elucidating the genes involved in pathogenesis in different viral lineages (West African vs Congo Basin), provide insights to help explain why emergence appears to be geographically limited. Novel vaccines offer one solution to curtail the spread of this disease.  相似文献   

12.
The virulence factor IpgD, delivered into nonphagocytic cells by the type III secretion system of the pathogen Shigella flexneri, is a phosphoinositide 4-phosphatase generating phosphatidylinositol 5 monophosphate (PtdIns5P). We show that PtdIns5P is rapidly produced and concentrated at the entry foci of the bacteria, where it colocalises with phosphorylated Akt during the first steps of infection. Moreover, S. flexneri-induced phosphorylation of host cell Akt and its targets specifically requires IpgD. Ectopic expression of IpgD in various cell types, but not of its inactive mutant, or addition of short-chain penetrating PtdIns5P is sufficient to induce Akt phosphorylation. Conversely, sequestration of PtdIns5P or reduction of its level strongly decreases Akt phosphorylation in infected cells or in IpgD-expressing cells. Accordingly, IpgD and PtdIns5P production specifically activates a class IA PI 3-kinase via a mechanism involving tyrosine phosphorylations. Thus, S. flexneri parasitism is shedding light onto a new mechanism of PI 3-kinase/Akt activation via PtdIns5P production that plays an important role in host cell responses such as survival.  相似文献   

13.
Successful replication of Varicella-zoster virus (VZV) relies upon strategies to counteract host defense mechanisms. This can be achieved by modulating host cell signaling pathways, which regulate apoptosis and cell survival. The Akt cascade is crucial for the regulation of cell survival since it controls factors such as Bad, FOXO1, mTor and GSK-3alpha/beta. These factors are involved in the regulation of cell death, cell cycle and translation. Here, we report i) that the VZV infection of MeWo cells caused a 9 to 18-fold increased phosphorylation of Akt. This phosphorylation was independent from PI3K inasmuch as the PI3K phosphorylation pattern differed strongly from the one of Akt. Bad, FOXO1 and mTor showed also variations in their phosphorylation patterns: phosphorylation of Bad (ser-136) decreased during the infection while phosphorylation of ser-2448 of mTor and of ser-256 of FOXO1 increased. The phosphorylation of GSK-3alpha/beta remained relatively stable during the infection. ii) Inhibition of PI3K, Akt or GSK-3alpha/beta prior to infection resulted in a severe decline of viral replication. The inhibition of Akt resulted also in an increased apoptotic response. iii) Transfection studies using plasmids coding for functional or inactive VZV protein kinases, pORFs 47 and 66, demonstrated an increase in Akt phosphorylation. Infection of MeWo cells with VZVDelta47 and VZVDelta66 resulted in a decline of Akt and GSK-3alpha/beta phosphorylation. These results suggest i) an essential role of PI3K/Akt/GSK-3alpha/beta signaling for a successful replication of VZV and ii) a key function of VZV kinases pORFs 47 and 66 to activate this pathway.  相似文献   

14.
Monkeypox virus (MPXV) infection has recently expanded in geographic distribution and can be fatal in up to 10% of cases. The intravenous (i.v.) inoculation of nonhuman primates (NHPs) results in an accelerated fulminant disease course compared to that of naturally occurring MPXV infection in humans. Alternative routes of inoculation are being investigated to define an NHP model of infection that more closely resembles natural disease progression. Our goal was to determine if the intrabronchial (i.b.) exposure of NHPs to MPXV results in a systemic disease that better resembles the progression of human MPXV infection. Here, we compared the disease course following an i.v. or i.b. inoculation of NHPs with 10-fold serial doses of MPXV Zaire. Classical pox-like disease was observed in NHPs administered a high virus dose by either route. Several key events were delayed in the highest doses tested of the i.b. model compared to the timing of the i.v. model, including the onset of fever, lesion appearance, peak viremia, viral shedding in nasal and oral swabs, peak cytokine levels, and time to reach endpoint criteria. Virus distribution across 19 tissues was largely unaffected by the inoculation route at the highest doses tested. The NHPs inoculated by the i.b. route developed a viral pneumonia that likely exacerbated disease progression. Based on the observations of the delayed onset of clinical and virological parameters and endpoint criteria that may more closely resemble those of human MPXV infection, the i.b. MPXV model should be considered for the further investigation of viral pathogenesis and countermeasures.  相似文献   

15.
The serine-threonine kinase Akt is a protooncogene involved in the regulation of cell proliferation and survival. Activation of Akt is initiated by binding to the phospholipid products of phosphoinositide 3-kinase at the inner leaflet of the plasma membranes followed by phosphorylation at Ser(473) and Thr(308). We have found that Akt is activated by Salmonella enterica serovar Typhimurium in epithelial cells. A bacterial effector protein, SigD, which is translocated into host cells via the specialized type III secretion system, is essential for Akt activation. In HeLa cells, wild type S. typhimurium induced translocation of Akt to membrane ruffles and phosphorylation at residues Thr(308) and Ser(473) and increased kinase activity. In contrast, infection with a SigD deletion mutant did not induce phosphorylation or activity although Akt was translocated to membrane ruffles. Complementation of the SigD deletion strain with a mutant containing a single Cys to Ser mutation (C462S), did not restore the Akt activation phenotype. This residue has previously been shown to be essential for inositol phosphatase activity of the SigD homologue, SopB. Our data indicate a novel mechanism of Akt activation in which the endogenous cellular pathway does not convert membrane-associated Akt into its active form. SigD is also the first bacterial effector to be identified as an activator of Akt.  相似文献   

16.
The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.  相似文献   

17.
Ligation of cell surface-associated GRP78 by activated α(2) -macroglobulin triggers pro-proliferative cellular responses. In part, this results from activation of adenylyl cyclase leading to an increase in cAMP. We have previously employed the cAMP analog 8-CPT-2Me-cAMP to probe these responses. Here we show in 1-LN prostate cancer cells that 8-CPT-2Me-cAMP causes a dose-dependent increase in Epac1, p-Akt(T308) , p-Akt(S473) , but not p-CREB. By contrast, the PKA activator 6-Benz-cAMP caused a dose-dependent increase in p-CREB, but not Epac1. We measured mTORC2-dependent Akt phosphorylation at S473 in immunoprecipitates of mTOR or Rictor from 1-LN cells. 8-CPT-2Me-cAMP caused a two-threefold increase in p-Akt(S473) and Akt(S473) kinase activity in Rictor immunoprecipitates. By contrast, there was only a negligible effect on p-Akt(T308) in Rictor immunoprecipitates. Silencing Rictor gene expression by RNAi significantly suppressed 8-CPT-2Me-cAMP-induced phosphorylation of Akt at Ser(473) . These studies represent the first report that Epac1 mediates mTORC2-dependent phosphorylation of Akt(S473) . Pretreatment of these cells with the PI 3-Kinase inhibitor LY294002 significantly suppressed 8-CPT-2Me-cAMP-dependent p-Akt(S473) and p-Akt(S473) kinase activities, and both effects were rapamycin insensitive. This treatment caused a two to threefold increase in S6 Kinase and 4EBP1 phosphorylation, indices of mTORC1 activation. Pretreatment of the cells with LY294002 and rapamycin significantly suppressed 8-CPT-2Me-cAMP-induced phosphorylation of S6 Kinase and 4EBP1. We further demonstrate that in 8-CPT-2Me-cAMP-treated cells, Epac1 co-immunoprecipitates with AKAP, Raptor, Rictor, PDE3B, and PDE4D suggesting thereby that during Epac1-induced activation of mTORC1 and mTORC2, Epac1 may have an additional function as a "scaffold" protein.  相似文献   

18.
19.
Kang ES  Han D  Park J  Kwak TK  Oh MA  Lee SA  Choi S  Park ZY  Kim Y  Lee JW 《Experimental cell research》2008,314(11-12):2238-2248
O-GlcNAc transferase (OGT)-mediated modification of protein Ser/Thr residues with O-GlcNAc influences protein activity, similar to the effects of phosphorylation. The anti-apoptotic Akt1 is both activated by phosphorylation and modified with O-GlcNAc. However, the nature and significance of the Akt1 O-GlcNAc modification is unknown. The relationship of O-GlcNAc modification and phosphorylation at Akt1 Ser473 was examined with respect to apoptosis of murine beta-pancreatic cells. Glucosamine treatment induced apoptosis, which correlated with enhanced O-GlcNAc modification of Akt1 and concomitant reduction in Ser473 phosphorylation. Pharmacological inhibition of OGT or O-GlcNAcase revealed an inverse correlation between O-GlcNAc modification and Ser473 phosphorylation of Akt1. MALDI-TOF/TOF mass spectrometry analysis of Akt1 immunoprecipitates from glucosamine-treated cells, but not untreated controls, showed a peptide containing S473/T479 that was presumably modified with O-GlcNAc. Furthermore, in vitro O-GlcNAc-modification analysis of wildtype and mutant Akt1 revealed that S473 was targeted by recombinant OGT. A S473A Akt1 mutant demonstrated reduced basal and glucosamine-induced Akt1 O-GlcNAc modification compared with wildtype Akt1. Furthermore, wildtype Akt1, but not the S473A mutant, appeared to be associated with OGT following glucosamine treatment. Together, these observations suggest that Akt1 Ser473 may undergo both phosphorylation and O-GlcNAc modification, and the balance between these may regulate murine beta-pancreatic cell fate.  相似文献   

20.
Protein kinase B (PKB/Akt) plays a pivotal role in signaling pathways downstream of phosphatidylinositol 3-kinase, regulating fundamental processes such as cell survival, cell proliferation, differentiation, and metabolism. PKB/Akt activation is regulated by phosphoinositide phospholipid-mediated plasma membrane anchoring and by phosphorylation on Thr-308 and Ser-473. Whereas the Thr-308 site is phosphorylated by PDK-1, the identity of the Ser-473 kinase has remained unclear and controversial. The integrin-linked kinase (ILK) is a potential regulator of phosphorylation of PKB/Akt on Ser-473. Utilizing double-stranded RNA interference (siRNA) as well as conditional knock-out of ILK using the Cre-Lox system, we now demonstrate that ILK is essential for the regulation of PKB/Akt activity. ILK knock-out had no effect on phosphorylation of PKB/Akt on Thr-308 but resulted in almost complete inhibition of phosphorylation on Ser-473 and significant inhibition of PKB/Akt activity, accompanied by significant stimulation of apoptosis. The inhibition of PKB/Akt Ser-473 phosphorylation was rescued by kinase-active ILK but not by a kinase-deficient mutant of ILK, suggesting a role for the kinase activity of ILK in the stimulation of PKB/Akt phosphorylation. ILK knock-out also resulted in the suppression of phosphorylation of GSK-3beta on Ser-9 and cyclin D1 expression. These data establish ILK as an essential upstream regulator of PKB/Akt activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号