首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polarity in intracellular calcium signaling.   总被引:8,自引:0,他引:8  
The concentration of free calcium ions (Ca(2+)) in the cytosol is precisely regulated and can be rapidly increased in response to various types of stimuli. Since Ca(2+) can be used to control different processes in the same cell, the spatial organization of cytosolic Ca(2+) signals is of considerable importance. Polarized cells have advantages for Ca(2+) studies since localized signals can be related to particular organelles. The pancreatic acinar cell is well-characterized with a clearly polarized structure and function. Since the discovery of the intracellular Ca(2+)-releasing function of inositol 1,4,5-trisphosphate (IP(3)) in the pancreas in the early 1980s, this cell has become a popular study object and is now one of the best-characterized with regard to Ca(2+) signaling properties. Stimulation of pancreatic acinar cells with the neurotransmitter acetylcholine or the hormone cholecystokinin evokes Ca(2+) signals that are either local or global, depending on the agonist concentration and the length of the stimulation period. The nature of the Ca(2+) transport events across the basal and apical plasma membranes as well as the involvement of the endoplasmic reticulum (ER), the nucleus, the mitochondria, and the secretory granules in Ca(2+) signal generation and termination have become much clearer in recent years.  相似文献   

3.
Studies on pancreatic acinar cells provided the original evidence for the Ca(2+) releasing action of inositol 1,4,5-trisphosphate (IP(3)). Ironically, this system has presented problems for the general theory that IP(3) acts primarily on the endoplasmic reticulum (ER), because the IP(3)-elicited Ca(2+) release occurs in the apical pole, which is dominated by zymogen granules (ZGs) and apparently contains very little ER. Using confocal and two-photon microscopy and a number of different ER-specific fluorescent probes, we have now investigated in detail the distribution of the ER in living pancreatic acinar cells. It turns out that although the bulk of the ER, as expected, is clearly located in the baso-lateral part of the cell, there is significant invasion of ER into the granular pole and each ZG is in fact surrounded by strands of ER. This structural evidence from living cells, in conjunction with recent functional studies demonstrating the high Ca(2+) mobility in the ER lumen, provides the framework for a coherent and internally consistent theory for cytosolic Ca(2+) signal generation in the apical secretory pole, in which the primary Ca(2+) release occurs from ER extensions in the granular pole supplied with Ca(2+) from the main store at the base of the cell by the tunnel function of the ER.  相似文献   

4.
Secretory vesicles of chromaffin cells are acidic organelles that maintain an increasing pH gradient towards the cytosol (5.5 vs. 7.3) that is mediated by V-ATPase activity. This gradient is primarily responsible for the accumulation of large concentrations of amines and Ca(2+), although the mechanisms mediating Ca(2+) uptake and release from granules, and the physiological relevance of these processes, remain unclear. The presence of a vesicular matrix appears to create a bi-compartmentalised medium in which the major fractions of solutes, including catecholamines, nucleotides and Ca(2+), are strongly associated with vesicle proteins, particularly chromogranins. This association appears to be favoured at acidic pH values. It has been demonstrated that disrupting the pH gradient of secretory vesicles reduces their rate of exocytosis and promotes the leakage of vesicular amines and Ca(2+), dramatically increasing the movement of secretory vesicles and triggering exocytosis. In this short review, we will discuss the data available that highlights the importance of pH in regulating the association between chromogranins, vesicular amines and Ca(2+). We will also address the potential role of vesicular Ca(2+) in two major processes in secretory cells, vesicle movement and exocytosis.  相似文献   

5.
Gallstones can cause acute pancreatitis, an often fatal disease in which the pancreas digests itself. This is probably because of biliary reflux into the pancreatic duct and subsequent bile acid action on the acinar cells. Because Ca(2+) toxicity is important for the cellular damage in pancreatitis, we have studied the mechanisms by which the bile acid taurolithocholic acid 3-sulfate (TLC-S) liberates Ca(2+). Using two-photon plasma membrane permeabilization and measurement of [Ca(2+)] inside intracellular stores at the cell base (dominated by ER) and near the apex (dominated by secretory granules), we have characterized the Ca(2+) release pathways. Inhibition of inositol trisphosphate receptors (IP(3)Rs), by caffeine and 2-APB, reduced Ca(2+) release from both the ER and an acidic pool in the granular area. Inhibition of ryanodine receptors (RyRs) by ruthenium red (RR) also reduced TLC-S induced liberation from both stores. Combined inhibition of IP(3)Rs and RyRs abolished Ca(2+) release. RyR activation depends on receptors for nicotinic acid adenine dinucleotide phosphate (NAADP), because inactivation by a high NAADP concentration inhibited release from both stores, whereas a cyclic ADPR-ribose antagonist had no effect. Bile acid-elicited intracellular Ca(2+) liberation from both the ER and the apical acidic stores depends on both RyRs and IP(3)Rs.  相似文献   

6.
D-Aspartate in mammalian neuronal and neuroendocrine cells is suggested to play a regulatory role(s) in the neuroendocrine function. Although D-aspartate is known to be released from neuroendocrine cells, the mechanism underlying the release is less understood. Rat pheochromocytoma PC12 cells contain an appreciable amount of D-aspartate (257 +/- 31 pmol/10(7) cells). Indirect immunofluorescence microscopy with specific antibodies against d-aspartate indicated that the amino acid is present within a particulate structure, which is co-localized with dopamine and chromogranin A, markers for secretory granules, but not with synaptophysin, a marker for synaptic-like microvesicles. After sucrose density gradient centrifugation of the postnuclear particulate fraction, about 80% of the d-aspartate was recovered in the secretory granule fraction. Upon the addition of KCl, an appreciable amount of D-aspartate (about 40 pmol/10(7) cells at 10 min) was released from cultured cells on incubation in the presence of Ca(2+) in the medium. The addition of also triggered d-aspartate release. Botulinum neurotoxin type E inhibited about 40% of KCl- and Ca(2+)-dependent d-aspartate release followed by specific cleavage of 25-kDa synaptosomal-associated protein. alpha-Latrotoxin increased the intracellular [Ca(2+)] and caused the Ca(2+)-dependent d-aspartate release. Bafilomycin A1 dissipated the intracellular acidic regions and inhibited 40% of the Ca(2+)-dependent D-aspartate release. These properties are similar to those of the exocytosis of dopamine. Furthermore, digitonin-permeabilized cells took up radiolabeled d-aspartate depending on MgATP, which is sensitive to bafilomycin A1 or 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile. Taken together, these results strongly suggest that d-aspartate is stored in secretory granules and then secreted through a Ca(2+)-dependent exocytotic mechanism. Exocytosis of D-aspartate further supports the role(s) of D-aspartate as a chemical transmitter in neuroendocrine cells.  相似文献   

7.
Huh YH  Yoo JA  Bahk SJ  Yoo SH 《FEBS letters》2005,579(12):2597-2603
Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.  相似文献   

8.
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.  相似文献   

9.
Huh YH  Jeon SH  Yoo JA  Park SY  Yoo SH 《Biochemistry》2005,44(16):6122-6132
We show here that expression of chromogranins in non-neuroendocrine NIH3T3 cells significantly increased the amount of IP(3)-mediated intracellular Ca(2+) mobilization in these cells, whereas suppression of them in neuroendocrine PC12 cells decreased the amount of mobilized Ca(2+). We have therefore investigated the relationship between the IP(3)-induced intracellular Ca(2+) mobilization and secretory granules. The level of IP(3)-mediated Ca(2+) release in CGA-expressing NIH3T3 cells was 40% higher than in the control cells, while that of CGB-expressing cells was 134% higher, reflecting the number of secretory granules formed. Suppression of CGA and CGB expression in PC12 cells resulted in 41 and 78% reductions in the number of secretory granules, respectively, while the extents of IP(3)-induced Ca(2+) release in these cells were reduced 40 and 69%, respectively. The newly formed secretory granules of NIH3T3 cells contained all three isoforms of the IP(3)Rs. Comparison of the concentrations of the IP(3)R isoforms expressed in the ER and nucleus of chromogranin-expressing and nonexpressing NIH3T3 cells did not show significant differences, indicating that chromogranin expression did not affect the expression of endogenous IP(3)Rs. Nonetheless, the IP(3)R concentrations in secretory granules of chromogranin-expressing NIH3T3 cells were 3.5-4.7-fold higher than those of the ER, similar to the levels found in secretory granules of neuroendocrine chromaffin cells, thus suggesting that the IP(3)Rs targeted to the newly formed secretory granules are newly induced by chromogranins without affecting the expression of intrinsic IP(3)Rs. These results strongly suggest that the extent of IP(3)-induced intracellular Ca(2+) mobilization in secretory cells is closely related to the number of secretory granules.  相似文献   

10.
The phenomenology of nuclear Ca(2+) dynamics has experienced important progress revealing the broad range of cellular processes that it regulates. Although several agonists can mobilize Ca(2+) from storage in the nuclear envelope (NE) to the intranuclear compartment (INC), the mechanisms of Ca(2+) signaling in the nucleus still remain uncertain. Here we report that the NE/INC complex can function as an inositol-1,4,5-trisphosphate (InsP(3))-controlled Ca(2+) oscillator. Thin optical sectioning combined with fluorescent labeling of Ca(2+) probes show in cultured airway epithelial ciliated cells that ATP can trigger periodic oscillations of Ca(2+) in the NE ([Ca(2+)](NE)) and corresponding pulses of Ca(2+) release to the INC. Identical results were obtained in InsP(3)-stimulated isolated nuclei of these cells. Our data show that [Ca(2+)](NE) oscillations and Ca(2+) release to the INC result from the interplay between the Ca(2+)/K(+) ion-exchange properties of the intralumenal polyanionic matrix of the NE and two Ca(2+)-sensitive ion channels-an InsP(3)-receptor-Ca(2+) channel and an apamin-sensitive K(+) channel. A similar Ca(2+) signaling system operating under the same functional protocol and molecular hardware controls Ca(2+) oscillations and release in/to the endoplasmic reticulum/cytosol and in/to the granule/cytosol complexes in airway and mast cells. These observations suggest that these intracellular organelles share a remarkably conserved mechanism of InsP(3)-controlled frequency-encoded Ca(2+) signaling.  相似文献   

11.
The localization of various Ca(2+) transport and signaling proteins in secretory cells is highly restricted, resulting in polarized agonist-stimulated Ca(2+) waves. In the present work, we examined the possible roles of the Sec6/8 complex or the exocyst in polarized Ca(2+) signaling in pancreatic acinar cells. Immunolocalization by confocal microscopy showed that the Sec6/8 complex is excluded from tight junctions and secretory granules in these cells. The Sec6/8 complex was found in at least two cellular compartments, part of the complex showed similar, but not identical, localization with the Golgi apparatus and part of the complex associated with Ca(2+) signaling proteins next to the plasma membrane at the apical pole. Accordingly, immunoprecipitation (IP) of Sec8 did not coimmunoprecipitate betaCOP, Golgi 58K protein, or mannosidase II, all Golgi-resident proteins. By contrast, IP of Sec8 coimmunoprecipitates Sec6, type 3 inositol 1,4,5-trisphosphate receptors (IP(3)R3), and the Gbetagamma subunit of G proteins from pancreatic acinar cell extracts. Furthermore, the anti-Sec8 antibodies coimmunoprecipitate actin, Sec6, the plasma membrane Ca(2+) pump, the G protein subunits Galphaq and Gbetagamma, the beta1 isoform of phospholipase C, and the ER resident IP(3)R1 from brain microsomal extracts. Antibodies against the various signaling and Ca(2+) transport proteins coimmunoprecipitate Sec8 and the other signaling proteins. Dissociation of actin filaments in the immunoprecipitate had no effect on the interaction between Sec6 and Sec8, but released the actin and dissociated the interaction between the Sec6/8 complex and Ca(2+) signaling proteins. Hence, the interaction between the Sec6/8 and Ca(2+) signaling complexes is likely mediated by the actin cytoskeleton. The anti-Sec6 and anti-Sec8 antibodies inhibited Ca(2+) signaling at a step upstream of Ca(2+) release by IP(3). Disruption of the actin cytoskeleton with latrunculin B in intact cells resulted in partial translocation of Sec6 and Sec8 from membranes to the cytosol and interfered with propagation of agonist-evoked Ca(2+) waves. Our results suggest that the Sec6/8 complex has multiple roles in secretory cells including governing the polarized expression of Ca(2+) signaling complexes and regulation of their activity.  相似文献   

12.
The secretory granules of neuroendocrine cells, which contain large amounts of Ca(2+) and chromogranins, have been demonstrated to release Ca(2+) in response to inositol 1,4,5-trisphosphate (IP(3)), indicating the IP(3)-sensitive intracellular Ca(2+) store role of secretory granules. In our previous study, chromogranin A (CGA) was shown to interact with several secretory granule membrane proteins, including the IP(3) receptor (IP(3)R), at the intravesicular pH 5.5 (Yoo, S. H. (1994) J. Biol. Chem. 269, 12001-12006). To examine the functional aspect of this coupling, we measured the IP(3)-mediated Ca(2+) release property of the IP(3)R reconstituted into liposomes in the presence and absence of CGA. Presence of CGA in the IP(3)R-reconstituted liposome significantly enhanced the IP(3)-mediated Ca(2+) release from the liposomes. Moreover, the number of IP(3) bound to the reconstituted IP(3)R increased. The fluorescence energy transfer and IP(3)R Trp fluorescence quenching studies indicated that the structure of reconstituted IP(3)R becomes more ordered and exposed in the presence of CGA, suggesting that the coupled CGA in the liposome caused structural changes of the IP(3)R, changing it to a structure that is better suited to IP(3) binding and subsequent Ca(2+) release. These results appear to underscore the physiological significance of IP(3)R-CGA coupling in the secretory granules.  相似文献   

13.
NAADP receptors     
Of the established Ca(2+) mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations. Recent studies have identified a new class of calcium release channel, the two-pore channels (TPCs), as the likely targets for NAADP. These channels are endolysosomal in localization where they mediate local Ca(2+) release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca(2+) mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca(2+) release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca(2+)-induced Ca(2+) release (CICR) channels at lysosomal-ER junctions. The third is to regulate plasma membrane excitability by the targeting of Ca(2+) release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca(2+)-activated channels. In this review, I discuss the role of NAADP-mediated Ca(2+) release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca(2+) signaling.  相似文献   

14.
Many cells show a plateau of elevated cytosolic Ca(2+) after a long depolarization, suggesting delayed Ca(2+) release from intracellular compartments such as mitochondria and endoplasmic reticulum (ER). Mouse pancreatic beta-cells show a thapsigargin-sensitive plateau ('hump') of Ca(2+) after a 30 s depolarization but not after a 10 s depolarization. Surprisingly, this hump depends primarily on compartments other than the mitochondria or ER. It is reduced by only 22% upon blocking mitochondrial Na(+)-Ca(2+) exchange and by only 18% upon blocking ryanodine or IP(3) receptors together. Further, the time course of ER Ca(2+) measured by a targeted cameleon does not depend on the duration of depolarizations. Instead, the hump is reduced 35% by treatments with the dipeptide glycylphenylalanine beta-napthylamide, a tool often used to lyse lysosomes. We show that this dipeptide does not disturb ER functions, but it lyses acidic compartments and releases Ca(2+) into the cytosol. Moreover, it induces leaks in and possibly lyses insulin granules and stops mobilization of secretory granules to the readily releasable pool in beta-cells. We conclude that the dipeptide compromises dense-core secretory granules and that these granules comprise an acidic calcium store in beta-cells whose loading and/or release is sensitive to thapsigargin and which releases Ca(2+) after cytosolic Ca(2+) elevation.  相似文献   

15.
Upon activation, platelets release many active substances stored in alpha- and dense-core granules. However, the molecular mechanisms governing regulated exocytosis are not yet fully understood. Here, we have established an assay system using permeabilized platelets to analyze the Ca(2+)-induced exocytosis of both types of granules, focusing on RabGTPases. Incubation with Rab GDP dissociation inhibitor, an inhibitory regulator of RabGTPases, reduced membrane-bound RabGTPases extensively, and caused strong inhibition of the Ca(2+)-induced secretion of von Willebrand factor (vWF) stored in alpha-granules, but not that of [(3)H]5-hydroxytryptamine (5-HT) in dense-core granules. Specifically, Rab4 co-fractionated with vWF and P-selectin (an alpha-granule marker) upon separation of platelet organelles by density gradient centrifugation. Incubation of the permeabilized platelets with cell extracts expressing the dominant negative mutant of His-tagged Rab4S22N, but not with those of similar mutant His-Rab3BT36N, inhibited the vWF secretion, whereas neither of the cell extracts affected the [(3)H]5-HT secretion. Importantly, the inhibition of vWF secretion was rescued by depleting the cell extracts of the His-Rab4S22N with nickel beads. Thus, in platelets, the regulatory mechanisms governing alpha- and dense-core granule secretions are distinct, and Rab4 is an essential regulator of the Ca(2+)-induced exocytosis of alpha-granules.  相似文献   

16.
InsP(3) is an important link in the intracellular information network. Previous observations show that activation of InsP(3)-receptor channels on the granular membrane can turn secretory granules into Ca(2+) oscillators that deliver periodic trains of Ca(2+) release to the cytosol (T. Nguyen, W. C. Chin, and P. Verdugo, 1998, Nature, 395:908-912; I. Quesada, W. C. Chin, J. Steed, P. Campos-Bedolla, and P. Verdugo, 2001, BIOPHYS: J. 80:2133-2139). Here we show that InsP(3) can also turn mast cell granules into proton oscillators. InsP(3)-induced intralumenal [H(+)] oscillations are ATP-independent, result from H(+)/K(+) exchange in the heparin matrix, and produce perigranular pH oscillations with the same frequency. These perigranular pH oscillations are in-phase with intralumenal [H(+)] but out-of-phase with the corresponding perigranular [Ca(2+)] oscillations. The low pH of the secretory compartment has critical implications in a broad range of intracellular processes. However, the association of proton release with InsP(3)-induced Ca(2+) signals, their similar periodic nature, and the sensitivity of important exocytic proteins to the joint action of Ca(2+) and pH strongly suggests that granules might encode a combined Ca(2+)/H(+) intracellular signal. A H(+)/Ca(2+) signal could significantly increase the specificity of the information sent by the granule by transmitting two frequency encoded messages targeted exclusively to proteins like calmodulin, annexins, or syncollin that are crucial for exocytosis and require specific combinations of [Ca(2+)] "and" pH for their action.  相似文献   

17.
We determined the H+ and Ca(2+) uptake by fission yeast membranes separated on sucrose gradient and found that (i) Ca(2+) sequestering is due to Ca(2+)/H+ antiporter(s) localized to secretory pathway organelles while Ca(2+)-ATPase activity is not detectable in their membranes; (ii) immunochemically distinct V-H+-ATPases acidify the lumen of the secretory pathway organelles. The data indicate that the endoplasmic reticulum, Golgi and vacuole form a network of Ca(2+) and H+ stores in the single cell, providing favorable conditions for such key processes as protein folding/sorting, membrane fusion, ion homeostasis and Ca(2+) signaling in a differential and local manner.  相似文献   

18.
Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release.  相似文献   

19.
Galione A  Churchill GC 《Cell calcium》2002,32(5-6):343-354
The discovery of cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) as Ca(2+) releasing messengers has provided additional insight into how complex Ca(2+) signalling patterns are generated. There is mounting evidence that these molecules along with the more established messenger, myo-inositol 1,4,5-trisphosphate (IP(3)), have a widespread messenger role in shaping Ca(2+) signals in many cell types. These molecules have distinct structures and act on specific Ca(2+) release mechanisms. Emerging principles are that cADPR enhances the Ca(2+) sensitivity of ryanodine receptors (RYRs) to produce prolonged Ca(2+) signals through Ca(2+)-induced Ca(2+) release (CICR), while NAADP acts on a novel Ca(2+) release mechanism to produce a local trigger Ca(2+) signal which can be amplified by CICR by recruiting other Ca(2+) release mechanisms. Whilst IP(3) and cADPR mobilise Ca(2+) from the endoplasmic reticulum (ER), recent evidence from the sea urchin egg suggests that the major NAADP-sensitive Ca(2+) stores are reserve granules, acidic lysosomal-related organelles.In this review we summarise the role of multiple Ca(2+) mobilising messengers, Ca(2+) release channels and Ca(2+) stores, and the interplay between them, in the generation of specific Ca(2+) signals. Focusing upon cADPR and NAADP, we discuss how cellular stimuli may draw upon different combinations of these messengers to produce distinct Ca(2+) signalling signatures.  相似文献   

20.
The review focuses on calcium accumulation by secretory organelles. The observation that secretory granules contain variable and often important quantities of calcium (1-200 mM of total calcium) can be interpreted as a maturation index. A progressive loading with calcium would be permitted by a Ca2(+)-transport mechanism on the granular membrane and calcium-binding molecules in the granular core. The saturation of this store by the stimulus-induced calcium transient would permit in mature (calcium-loaded) granules the ionic crisis leading to exocytosis. The inside of secretory organelles being acidic, calcium influx into the granule can be driven by calcium-proton exchange. The calcium-proton exchanger could be a Ca2(+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号