首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formins are well-known as important regulators participating in the organization of the actin cytoskeleton in organisms. For many years in the past, research on plant formins is more difficult than that in other eukaryotic formins and is limited to class I formins. Nevertheless, positive progress has been made in plant formin research recently, especially the investigations on class II formins. New functions of plant formins are identified gradually, such as regulating cell division and affecting diffuse cell expansion. More significantly, plant formins are also verified to interact with microtubules in vivo and in vitro. They may probably function as linking proteins between microtubules and microfilaments to participate in various cellular processes.  相似文献   

2.
The control of cell growth and polarity depends on a dynamic actin cytoskeleton that has the ability to reorganize in response to developmental and environmental stimuli. In animals and fungi, formins are just one of the four major classes of poly-L-proline-containing (PLP) proteins that form part of the signal-transduction cascade that leads to rearrangement of the actin cytoskeleton. Analysis of the Arabidopsis genome sequence indicates that, unlike animals and fungi, formins are the only class of conserved profilin-binding PLP proteins in plants. Moreover, plant formins show significant structural differences compared with their animal and fungal counterparts, raising the possibility that plant formins are subject to novel mechanisms of control or perform unique roles in plants.  相似文献   

3.
A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (K(d) < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements.  相似文献   

4.
Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro­tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element.  相似文献   

5.
Rho-GTPase stabilizes microtubules that are oriented towards the leading edge in serum-starved 3T3 fibroblasts through an unknown mechanism. We used a Rho-effector domain screen to identify mDia as a downstream Rho effector involved in microtubule stabilization. Constitutively active mDia or activation of endogenous mDia with the mDia-autoinhibitory domain stimulated the formation of stable microtubules that were capped and oriented towards the wound edge. mDia co-localized with stable microtubules when overexpressed and associated with microtubules in vitro. Rho kinase was not necessary for the formation of stable microtubules. Our results show that mDia is sufficient to generate and orient stable microtubules, and indicate that Dia-related formins are part of a conserved pathway that regulates the dynamics of microtubule ends.  相似文献   

6.
Cytoplasmic microtubules exist as distinct dynamic and stable populations within the cell. Stable microtubules direct and maintain cell polarity and it is thought that their stabilization is dependent on coordinative organization between the microtubule network and the actin cytoskeleton. A growing body of work suggests that some members of the formin family of actin remodeling proteins also regulate microtubule organization and stability. For example, we showed previously that expression of the novel formin INF1 is sufficient to induce microtubule stabilization and tubulin acetylation, but not tubulin detyrosination. An important issue with respect to the relationship between formins and microtubules is the determination of which formin domains mediate microtubule stabilization. INF1 has a distinct microtubule-binding domain at its C-terminus and the endogenous INF1 protein is associated with the microtubule network. Surprisingly, the INF1 microtubule-binding domain is not essential for INF1-induced microtubule acetylation. We show here that expression of the isolated FH1 + FH2 functional unit of INF1 is sufficient to induce microtubule acetylation independent of the INF1 microtubule-binding domain. It is not yet clear whether or not microtubule stabilization is a general property of all mammalian formins; therefore we expressed constitutively active derivatives of thirteen of the fifteen mammalian formin proteins in HeLa and NIH3T3 cells and measured their effects on stress fiber formation, MT organization and MT acetylation. We found that expression of the FH1 + FH2 unit of the majority of mammalian formins is sufficient to induce microtubule acetylation. Our results suggest that the regulation of microtubule acetylation is likely a general formin activity and that the FH2 should be thought of as a dual-function domain capable of regulating both actin and microtubule networks.  相似文献   

7.
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.

Formins regulate phragmoplast expansion, microtubule turnover rate, actin nucleation, and cell plate membrane remodeling during cytokinesis.  相似文献   

8.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

9.
Mammalian Diaphanous-related (mDia) formins are well known for their actin nucleation and filament elongation activities. They have since emerged as microtubule-binding proteins, and a recent study shows that mDia2 stabilizes microtubules independently of its actin nucleation activity.  相似文献   

10.
Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge.  相似文献   

11.
Formin is a major protein responsible for regulating the nucleation of actin filaments, and as such, it permits the cell to control where and when to assemble actin arrays. It is encoded by a multigene family comprising 21 members in Arabidopsis thaliana. The Arabidopsis formins can be separated into two phylogenetically-distinct classes: there are 11 class I formins and 10 class II formins. Significant questions remain unanswered regarding the molecular mechanism of actin nucleation and elongation stimulated by each formin isovariant, and how the different isovariants coordinate to regulate actin dynamics in cells. Here, we characterize a class II formin, AtFH19, biochemically. We found that AtFH19 retains all general properties of the formin family, including nucleation and barbed end capping activity. It can also generate actin filaments from a pool of actin monomers bound to profilin. However, both the nucleation and barbed end capping activities of AtFH19 are less efficient compared to those of another well-characterized formin, AtFH1. Interestingly, AtFH19 FH1FH2 competes with AtFH1 FH1FH2 in binding actin filament barbed ends, and inhibits the effect of AtFH1 FH1FH2 on actin. We thus propose a mechanism in which two quantitatively different formins coordinate to regulate actin dynamics by competing for actin filament barbed ends.  相似文献   

12.
The completed genome from the model plant Arabidopsis thaliana reveals the presence of a diverse multigene family of formin-like sequences, comprising more than 20 isoforms. This review highlights recent findings from biochemical, cell biological and reverse-genetic analyses of this family of actin nucleation factors. Important advances in understanding cellular function suggest major roles for plant formins during cytokinesis and cell expansion. Biochemical studies on a subset of plant formins emphasize the need to examine molecular mechanisms outside of mammalian and yeast systems. Notably, a combination of solution-based assays for actin dynamics and timelapse, single-filament imaging with TIRFM provide evidence for the first non-processive formin (AtFH1) in eukaryotes. Despite these advances it remains difficult to generate a consensus view of plant formin activities and cellular functions. One limitation to summarizing formin properties relates to the enormous variability in domain organization among the plant formins. Generating homology-based predictions that depend on conserved domains outside of the FH1 and FH2 will be virtually impossible for plant formins. A second major drawback is the lack of facile techniques for examining dynamics of individual actin filaments within live plant cells. This constraint makes it extremely difficult to bridge the gap between biochemical characterization of particular formin and its specific cellular function. There is promise, however, that recent technical advances in engineering appropriate fluorescent markers and new fluoresence imaging techniques will soon allow the direct visualization of cortical actin filament dynamics. The emergence of other model systems for studying actin cytoskeleton in vivo, such as the moss Physcomitrella patens, may also enhance our knowledge of plant formins.  相似文献   

13.
Zhang Z  Zhang Y  Tan H  Wang Y  Li G  Liang W  Yuan Z  Hu J  Ren H  Zhang D 《The Plant cell》2011,23(2):681-700
Multicellular organisms contain a large number of formins; however, their physiological roles in plants remain poorly understood. Here, we reveal that formin homology 5 (FH5), a type II formin mutated in rice morphology determinant (rmd), plays a crucial role in determining rice (Oryza sativa) morphology. FH5/RMD encodes a formin-like protein consisting of an N-terminal phosphatase tensin (PTEN)-like domain, an FH1 domain, and an FH2 domain. The rmd mutants display a bending growth pattern in seedlings, are stunted as adult plants, and have aberrant inflorescence (panicle) and seed shape. Cytological analysis showed that rmd mutants have severe cell elongation defects and abnormal microtubule and microfilament arrays. FH5/RMD is ubiquitously expressed in rice tissues, and its protein localization to the chloroplast surface is mediated by the PTEN domain. Biochemical assays demonstrated that recombinant FH5 protein can nucleate actin polymerization from monomeric G-actin or actin/profilin complexes, cap the barbed end of actin filaments, and bundle actin filaments in vitro. Moreover, FH5 can directly bind to and bundle microtubules through its FH2 domain in vitro. Our findings suggest that the rice formin protein FH5 plays a critical role in determining plant morphology by regulating actin dynamics and proper spatial organization of microtubules and microfilaments.  相似文献   

14.
Formins assemble non-branched actin filaments and modulate microtubule dynamics during cell migration and cell division. At the end of mitosis formins contribute to the generation of actin filaments that form the contractile ring. Rho small GTP-binding proteins activate mammalian diaphanous-related (mDia) formins by directly binding and disrupting an intramolecular autoinhibitory mechanism. Although the Rho-regulated activation mechanism is well characterized, little is known about how formins are switched off. Here we reveal a novel mechanism of formin regulation during cytokinesis based on the following observations; 1) mDia2 is degraded at the end of mitosis, 2) mDia2 is targeted for disposal by post-translational ubiquitin modification, 3) forced expression of activated mDia2 yields binucleate cells due to failed cytokinesis, and 4) the cytokinesis block is dependent upon mDia2-mediated actin assembly as versions of mDia2 incapable of nucleating actin but that still stabilize microtubules have no effect on cytokinesis. We propose that the tight control of mDia2 expression and ubiquitin-mediated degradation is essential for the completion of cell division. Because of the many roles for formins in cell morphology, we discuss the relevance of mDia protein turnover in other processes where ubiquitin-mediated proteolysis is an essential component.Formin proteins play a role in diverse processes such as cell migration (1, 2), vesicle trafficking (3, 4), tumor suppression (5, 6), and microtubule stabilization (7, 8). Formins also play an essential and conserved role in cytokinesis (911). Proper cell division is essential in all animals to maintain the integrity of their genome. Failure to complete cytokinesis can result in genomic instability and ultimately lead to disease such as cancer (12).The members of the mDia2 family of formins are autoregulated Rho effectors that remodel the cytoskeleton by nucleating and elongating non-branched actin filaments (13). The amino terminus of mDia contains a GTPase binding domain (GBD) that directs interaction with specific Rho small GTP-binding proteins. The adjacent Dia inhibitory domain (DID) mediates mDia autoregulation through its interaction with the carboxyl-terminal diaphanous autoregulatory domain (DAD) (14, 15). Between the DID and DAD domains lie the conserved formin homology 1 (FH1) and FH2 domains. The FH1 domain is a proline-rich region that mediates binding to other proteins such as profilin, Src, and Dia-interacting protein (1619). In contrast, the FH2 domain binds monomeric actin to generate filamentous actin (F-actin) and can also bind microtubules directly to induce their stabilization (8, 20).Although the mechanism of mDia activation is well characterized, little is known about its inactivation. Previous reports have suggested that formins can cycle between active, partially active, and inactive states (21, 22) due to GTP hydrolysis upon Rho binding to GTPase-activating proteins. Another formin inactivation mechanism is through mDia interactions with Dia-interacting protein (23). In the context of cortical actin assembly, Dia-interacting protein negatively regulates mDia2 actin polymerization but has no effect on mDia1 actin polymerization despite its ability to interact with both proteins directly (17). Because of the fundamental role for formins in cell division, we sought to identify how mDia2 is inactivated in mitosis.During cell division, the expression level and activity of many proteins (e.g. cyclins and Aurora and Polo kinases) are tightly regulated (24). A unifying regulatory mechanism among these proteins is ubiquitin-mediated proteolysis. In this study we find that mDia2 protein levels are constant from S phase into mitosis and dramatically decrease at the end of mitosis due to ubiquitin-mediated degradation. Failure to inhibit mDia2 actin assembly results in multinucleation, which supports an essential role for the tight regulation of mDia2 during cell division.  相似文献   

15.
Regulation of cell elongation is important for plant morphogenesis. Many studies have shown that cortical microtubules play crucial roles during cell elongation and that microtubule stability, organization, and dynamics are regulated by microtubule regulatory proteins.1 Recently, we reported that a novel protein from Arabidopsis, termed microtubule-destabilizing protein 25 (MDP25), functions as a negative regulator of hypocotyl cell elongation. MDP25 destabilizes microtubules and exerts its effect on microtubules as a result of transient elevation of cytosolic calcium levels.2  相似文献   

16.
微管作为细胞骨架的重要成员,在植物生长发育过程中起重要作用。下胚轴作为研究细胞伸长的模式系统之一,其伸长受到多种信号的调节。该文综述了微管骨架在响应环境和生长发育信号调节下胚轴伸长过程中的作用及机制,旨在帮助读者深入理解微管骨架响应上游信号在植物下胚轴伸长中的作用机理。  相似文献   

17.
Rho GTPases in animal cell mitosis   总被引:9,自引:0,他引:9  
The Rho GTPases have been thought to influence cell morphogenesis through remodeling of the actin cytoskeleton. Consistently, downstream targets such as the mDia family of formins and the WASP family proteins induce actin nucleation and polymerization, and another set of downstream effectors, the ROCK family protein kinases, are involved in regulation of actomyosin contractility. However, evidence has now accumulated that Rho GTPases also regulate local dynamics of microtubules. The mDia family proteins, for example, function downstream of Rho to stabilize and align microtubules in interphase cells. Concomitantly, the role of Rho GTPases in animal cell division, once thought to be limited to cytokinesis, has now been shown to extend to mitosis. Recent work indicates that they may function during both spindle orientation and chromosome congression. However, their involvement is cell-type-specific, raising arguments for and against a mitotic role for Rho GTPases.  相似文献   

18.
In filamentous fungi, the actin cytoskeleton is required for polarity establishment and maintenance at hyphal tips and for formation of a contractile ring at sites of septation. Recently, formins have been identified as Arp (actin-related protein) 2/3-independent nucleators of actin polymerization, and filamentous fungi contain a single formin that localizes to both sites. Work on cytoplasmic dynein and members of the kinesin and myosin families of motors has continued to reveal new information regarding the function and regulation of motors as well as demonstrate the importance of microtubules in the long-distance transport of vesicles/organelles in the filamentous fungi.  相似文献   

19.
Control of the assembly of ATP- and ADP-actin by formins and profilin   总被引:17,自引:0,他引:17  
Kovar DR  Harris ES  Mahaffy R  Higgs HN  Pollard TD 《Cell》2006,124(2):423-435
Formin proteins nucleate actin filaments, remaining processively associated with the fast-growing barbed ends. Although formins possess common features, the diversity of functions and biochemical activities raised the possibility that formins differ in fundamental ways. Further, a recent study suggested that profilin and ATP hydrolysis are both required for processive elongation mediated by the formin mDia1. We used total internal reflection fluorescence microscopy to observe directly individual actin filament polymerization in the presence of two mammalian formins (mDia1 and mDia2) and two yeast formins (Bni1p and Cdc12p). We show that these diverse formins have the same basic properties: movement is processive in the absence or presence of profilin; profilin accelerates elongation; and actin ATP hydrolysis is not required for processivity. These results suggest that diverse formins are mechanistically similar, but the rates of particular assembly steps vary.  相似文献   

20.
Formins are key regulators of actin nucleation and elongation. Diaphanous-related formins, the best-known subclass, are activated by Rho and play essential roles in cytokinesis. In cultured cells, Diaphanous-related formins also regulate cell adhesion, polarity and microtubules, suggesting that they may be key regulators of cell shape change and migration during development. However, their essential roles in cytokinesis hamper our ability to test this hypothesis. We used loss- and gain-of-function approaches to examine the role of Diaphanous in Drosophila morphogenesis. We found that Diaphanous has a dynamic expression pattern consistent with a role in regulating cell shape change. We used constitutively active Diaphanous to examine its roles in morphogenesis and its mechanisms of action. This revealed an unexpected role in regulating myosin levels and activity at adherens junctions during cell shape change, suggesting that Diaphanous helps coordinate adhesion and contractility of the underlying actomyosin ring. We tested this hypothesis by reducing Diaphanous function, revealing striking roles in stabilizing adherens junctions and inhibiting cell protrusiveness. These effects also are mediated through coordinated effects on myosin activity and adhesion, suggesting a common mechanism for Diaphanous action during morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号