首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the contribution of cytochrome P-450 1B1 (CYP1B1) to renal dysfunction and organ damage associated with ANG II-induced hypertension in rats. ANG II (300 ng·kg(-1)·min(-1)) or vehicle were infused for 2 wk, with daily injections of a selective CYP1B1 inhibitor, 2,4,3',5'-tetramethoxystilbene (TMS; 300 μg/kg ip), or its vehicle. ANG II increased blood pressure and renal CYP1B1 activity that were prevented by TMS. ANG II also increased water intake and urine output, decreased glomerular filtration rate, increased urinary Na(+) and K(+) excretion, and caused proteinuria, all of which were prevented by TMS. ANG II infusion caused hypertrophy, endothelial dysfunction, and increased reactivity of renal and interlobar arteries to vasoconstrictor agents and renal vascular resistance and interstitial fibrosis as indicated by accumulation of α-smooth muscle actin, fibronectin, and collagen, and inflammation as indicated by increased infiltration of CD-3(+) cells; these effects were inhibited by TMS. ANG II infusion also increased production of reactive oxygen species (ROS) and activities of NADPH oxidase, ERK1/2, p38 MAPK, and c-Src that were prevented by TMS. TMS alone had no effect on any of the above parameters. These data suggest that CYP1B1 contributes to the renal pathophysiological changes associated with ANG II-induced hypertension, most likely via increased ROS production and activation of ERK1/2, p38 MAPK, and c-Src and that CYP1B1 could serve as a novel target for treating renal disease associated with hypertension.  相似文献   

2.
3.
We investigated the role of receptor tyrosine kinases in Ang II-stimulated generation of reactive oxygen species (ROS) and assessed whether MAP kinase signaling by Ang II is mediated via redox-sensitive pathways. Production of ROS and activation of NADPH oxidase were determined by DCFDA (dichlorodihydrofluorescein diacetate; 2 micromol/L) fluorescence and lucigenin (5 micromol/L) chemiluminescence, respectively, in rat vascular smooth muscle cells (VSMC). Phosphorylation of ERK1/2, p38MAP kinase and ERK5 was determined by immunoblotting. The role of insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) was assessed with the antagonists AG1024 and AG1478, respectively. ROS bioavailability was manipulated with Tiron (10(-5) mol/L), an intracellular scavenger, and diphenylene iodinium (DPI; 10(-6) mol/L), an NADPH oxidase inhibitor. Ang II stimulated NADPH oxidase activity and dose-dependently increased ROS production (p < 0.05). These actions were reduced by AG1024 and AG1478. Ang II-induced ERK1/2 phosphorylation (276% of control) was decreased by AG1478 and AG1024. Neither DPI nor tiron influenced Ang II-stimulated ERK1/2 activity. Ang II increased phosphorylation of p38 MAP kinase (204% of control) and ERK5 (278% of control). These effects were reduced by AG1024 and AG1478 and almost abolished by DPI and tiron. Thus Ang II stimulates production of NADPH-inducible ROS partially through transactivation of IGF-1R and EGFR. Inhibition of receptor tyrosine kinases and reduced ROS bioavaliability attenuated Ang II-induced phosphorylation of p38 MAP kinase and ERK5, but not of ERK1/2. These findings suggest that Ang II activates p38MAP kinase and ERK5 via redox-dependent cascades that are regulated by IGF-1R and EGFR transactivation. ERK1/2 regulation by Ang II is via redox-insensitive pathways.  相似文献   

4.
Angiotensin II (Ang II) regulates vascular smooth muscle cell (VSMC) function by activating signaling cascades that promote vasoconstriction, growth, and inflammation. Subcellular mechanisms coordinating these processes are unclear. In the present study, we questioned the role of the actin cytoskeleton in Ang II mediated signaling through mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS) in VSMCs. Human VSMCs were studied. Cells were exposed to Ang II (10-7 mol/L) in the absence and presence of cytochalasin B (10-6 mol/L, 60 min), which disrupts the actin cytoskeleton. Phosphorylation of p38MAP kinase, JNK, and ERK1/2 was assessed by immuno blotting. ROS generation was measured using the fluoroprobe chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (4 micromol/L). Interaction between the cytoskeleton and NADPH oxidase was determined by evaluating the presence of p47phox in the Triton X-100 insoluble membrane fraction. Ang II significantly increased phosphorylation of p38MAP kinase, JNK, and ERK1/2 (two- to threefold above control, p < 0.05). Cytochalasin B pretreatment attenuated p38MAP kinase and JNK effects (p < 0.05) without altering ERK1/2 phosphorylation. ROS formation, which was increased in Ang II stimulated cells, was significantly reduced by cytochalasin B (p < 0.01). p47phox, critically involved in NADPH oxidase activation, colocalized with the actin cytoskeleton in Ang II stimulated cells. Our data demonstrate that Ang II mediated ROS formation and activation of p38MAP kinase and JNK, but not ERK1/2, involves the actin cytoskeleton in VSMCs. In addition, Ang II promotes interaction between actin and p47phox. These data indicate that the cytoskeleton is involved in differential MAP kinase signaling and ROS generation by Ang II in VSMCs. Together, these studies suggest that the cytoskeleton may be a central point of crosstalk in growth- and redox-signaling pathways by Ang II, which may be important in the regulation of VSMC function.  相似文献   

5.
6.
The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.  相似文献   

7.
High reactive oxygen species (ROS) levels and enhanced vascular smooth muscle cells (VSMC) proliferation are observed in numerous cardiovascular diseases. The mechanisms by which hormones such as angiotensin II (Ang II) acts to promote these cellular responses remain poorly understood. We have previously shown that the ADP-ribosylation factor 6 (ARF6), a molecular switch that coordinates intracellular signaling events can be activated by the Ang II receptor (AT1R). Whether this small GTP-binding protein controls the signaling events leading to ROS production and therefore Ang II-dependent VSMC proliferation, remains however unknown. Here, we demonstrate that in rat aortic VSMC, Ang II stimulation led to the subsequent activation of ARF6 and Rac1, a key regulator of NADPH oxidase activity. Using RNA interference, we showed that ARF6 is essential for ROS generation since in conditions where this GTPase was knocked down, Ang II could no longer promote superoxide anion production. In addition to regulating Rac1 activity, ARF6 also controlled expression of the NADPH oxidase 1 (Nox 1) as well as the ability of the EGFR to become transactivated. Finally, ARF6 also controlled MAPK (Erk1/2, p38 and Jnk) activation, a key pathway of VSMC proliferation. Altogether, our findings demonstrate that Ang II promotes activation of ARF6 to controls ROS production by regulating Rac1 activation and Nox1 expression. In turn, increased ROS acts to activate the MAPK pathway. These signaling events represent a new molecular mechanism by which Ang II can promote proliferation of VSMC.  相似文献   

8.
Extracellular signal-regulated kinase 5 (ERK5), a recently discovered mitogen-activated protein kinase (MAPK), plays a key role in the development and pathogenesis of cardiovascular disease. In order to clarify the pathophysiological significance of ERK5 in vascular remodeling, we investigated ERK5 phosphorylation in hypertrophy of human aortic smooth muscle cells (HASMCs) induced by angiotensin II (Ang II). The AT1 receptor was involved in Ang II-induced ERK5 activity. Hypertrophy was detected by the measurement of protein synthesis with [3H]-Leu incorporation in cultured HASMCs. Ang II rapidly induced phosphorylation of ERK5 at Thr218/Tyr220 residues in a time- and dose-dependent manner. Activation of myocyte enhancer factor-2C (MEF2C) by ERK5 was inhibited by PD98059. Transfecting HASMCs with small interfering RNA (siRNA) to silence ERK5 inhibited Ang II-induced cell hypertrophy. Thus, ERK5 phosphorylation contributes to MEF2C activation and subsequent HASMC hypertrophy induced by Ang II, for a novel molecular mechanism in cardiovascular diseases induced by Ang II.  相似文献   

9.
Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.  相似文献   

10.
11.
Angiotensin II (Ang II), protein kinase C (PKC), reactive oxygen species (ROS) generated by NADPH oxidase, the activation of Janus kinase 2 (JAK2), and the polyol pathway play important parts in the hyperproliferation of vascular smooth muscle cells (VSMC), a characteristic feature of diabetic macroangiopathy. The precise mechanism, however, remains unclear. This study investigated the relation between the polyol pathway, PKC-beta, ROS, JAK2, and Ang II in the development of diabetic macroangiopathy. VSMC cultured in high glucose (HG; 25 mm) showed significant increases in the tyrosine phosphorylation of JAK2, production of ROS, and proliferation activities when compared with VSMC cultured in normal glucose (5.5 mm (NG)). Both the aldose reductase specific inhibitor (zopolrestat) or transfection with aldose reductase antisense oligonucleotide blocked the phosphorylation of JAK2, the production of ROS, and proliferation of VSMC induced by HG, but it had no effect on the Ang II-induced activation of these parameters in both NG and HG. However, transfection with PKC-beta antisense oligonucleotide, preincubation with a PKC-beta-specific inhibitor (LY379196) or apocynin (NADPH oxidase-specific inhibitor), or electroporation of NADPH oxidase antibodies blocked the Ang II-induced JAK2 phosphorylation, production of ROS, and proliferation of VSMC in both NG and HG. These observations suggest that the polyol pathway hyperactivity induced by HG contributes to the development of diabetic macroangiopathy through a PKC-beta-ROS activation of JAK2.  相似文献   

12.
13.
We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.  相似文献   

14.
Angiotensin II (Ang II) is a main pathophysiological culprit peptide for hypertension and atherosclerosis by causing vascular smooth muscle cell (VSMC) proliferation and migration. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, is currently used for the treatment of type-2 diabetes, and is believed to have beneficial effects for cardiovascular diseases. However, the vascular protective mechanisms of GLP-1 receptor agonists remain largely unexplained. In the present study, we examined the effect of exendin-4 on Ang II-induced proliferation and migration of cultured rat aortic smooth muscle cells (RASMC). The major findings of the present study are as follows: (1) Ang II caused a phenotypic switch of RASMC from contractile type to synthetic proliferative type cells; (2) Ang II caused concentration-dependent RASMC proliferation, which was significantly inhibited by the pretreatment with exendin-4; (3) Ang II caused concentration-dependent RASMC migration, which was effectively inhibited by the pretreatment with exendin-4; (4) exendin-4 inhibited Ang II-induced phosphorylation of ERK1/2 and JNK in a pre-incubation time-dependent manner; and (5) U0126 (an ERK1/2 kinase inhibitor) and SP600125 (a JNK inhibitor) also inhibited both RASMC proliferation and migration induced by Ang II stimulation. These results suggest that exendin-4 prevented Ang II-induced VSMC proliferation and migration through the inhibition of ERK1/2 and JNK phosphorylation caused by Ang II stimulation. This indicates that GLP-1 receptor agonists should be considered for use in the treatment of cardiovascular diseases in addition to their current use in the treatment of diabetes mellitus.  相似文献   

15.
《Free radical research》2013,47(7):912-919
Abstract

Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.  相似文献   

16.
Rutaecarpine attenuates hypertensive cardiac hypertrophy in the rats with abdominal artery constriction (AAC); however, its mechanism of action remains largely unknown. Our previous study indicated that NADPH oxidase 4 (Nox4) promotes angiotensin II (Ang II)‐induced cardiac hypertrophy through the pathway between reactive oxygen species (ROS) and a disintegrin and metalloproteinase‐17 (ADAM17) in primary cardiomyocytes. This research aimed to determine whether the Nox4‐ROS‐ADAM17 pathway is involved in the protective action of rutaecarpine against hypertensive cardiac hypertrophy. AAC‐induced hypertensive rats were adopted to evaluate the role of rutaecarpine in hypertensive cardiac hypertrophy. Western blotting and real‐time PCR were used to detect gene expression. Rutaecarpine inhibited hypertensive cardiac hypertrophy in AAC‐induced hypertensive rats. These findings were confirmed by the results of in vitro experiments that rutaecarpine significantly inhibited Ang II‐induced cardiac hypertrophy in primary cardiomyocytes. Likewise, rutaecarpine significantly suppressed the Nox4‐ROS‐ADAM17 pathway and over‐activation of extracellular signal‐regulated kinase (ERK) 1/2 pathway in the left ventricle of AAC‐induced hypertensive rats and primary cardiomyocytes stimulated with Ang II. The inhibition of Nox4‐ROS‐ADAM17 pathway and over‐activation of ERK1/2 might be associated with the beneficial role of rutaecarpine in hypertensive cardiac hypertrophy, thus providing additional evidence for preventing hypertensive cardiac hypertrophy with rutaecarpine.  相似文献   

17.
Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. Recent in vitro and in vivo studies have suggested that reactive oxygen species (ROS) may play an important role in cardiac hypertrophy. It was therefore thought to be of particular value to examine the effects of antioxidants on cardiac hypertrophy. Epigallocatechin-3-gallate (EGCG) is a major bioactive polyphenol present in green tea and a potent antioxidant. The current study was designed to test the hypothesis that EGCG inhibits cardiac hypertrophy in vitro and in vivo. In this study, we investigated the effects of EGCG on angiotensin II- (Ang II) and pressure-overload-induced cardiac hypertrophy. Our results showed that EGCG attenuated Ang II- and pressure-overload-mediated cardiac hypertrophy. Both reactive oxygen species generation and NADPH oxidase expressions induced by Ang II and pressure overload were suppressed by EGCG. The increased hypertension by pressure overload was almost completely blocked after EGCG treatment. Further studies showed that EGCG inhibited Ang II-induced NF-kappaB and AP-1 activation. Inhibition of the activity of NF-kappaB was through blocking ROS-dependent p38 and JNK signaling pathways, whereas inhibition of AP-1 activation was via blocking EGFR transactivation and its downstream events ERKs/PI3K/Akt/mTOR/p70(S6K). The combination of these actions resulted in repressing the reactivation of ANP and BNP, and ultimately preventing the progress of cardiac hypertrophy. These findings indicated that EGCG prevents the development of cardiac hypertrophy through ROS-dependent and -independent mechanisms involving inhibition of different intracellular signaling transductional pathways.  相似文献   

18.
Endothelial progenitor cells (EPCs) play an important role in postnatal neovascularization and re-endothelialization in response to tissue ischemia and endothelial injury. It is reported that the circulating EPCs number is decreased during hypertension. However, the detailed mechanism is still unclear. Our previous studies have shown that ClC-3 chloride channel is up-regulated with the development of hypertension. This study aims to test whether ClC-3 participates in EPC apoptosis under the condition of increased oxidative stress in angiotensin II (Ang II)-induced hypertension. The results showed that stimulation with 10?6mol/L Ang II significantly up-regulated the endogenous ClC-3 expression and increased intracellular reactive oxygen species (ROS) generation in EPCs of wild type mice, accompanied by an enhanced NADPH oxidase activity and the expression of gp91phox (NOX-2), a key catalytic subunit of NADPH oxidase. However, these effects of Ang II were significantly reduced in EPCs of ClC-3?/? mice. Compared with control, treatment with Ang II induced EPCs apoptosis in wild type mice, concomitantly with declined Bcl-2/Bax ratio, depressed mitochondrial membrane potential and activation of poly(ADP-ribose) polymerase, which was remarkably prevented by both ClC-3 knockout and NADPH oxidase inhibitor apocynin. In addition, the role of ClC-3 deficiency in protecting EPCs against Ang II-induced oxidative stress and apoptosis was further confirmed in Ang II-infused hypertensive mice in vivo. In conclusion, ClC-3 deficiency inhibited Ang II-induced EPC apoptosis via suppressing ROS generation derived from NADPH oxidase.  相似文献   

19.
20.
Background and aimsAngiotensin II (Ang II) is commonly used to induce aortic aneurysm and atherosclerosis in animal models. Ang II upregulates NADPH oxidase isoform Nox4 in aortic smooth muscle cells (SMCs) in mice. However, whether smooth muscle Nox4 is directly involved in Ang II-induced aortic aneurysm and atherosclerosis is unclear.Methods & resultsTo address this, we used smooth muscle-specific Nox4 dominant-negative (SDN) transgenic mice, in which Nox4 activity is constitutively inhibited. In non-transgenic (NTg) mice, Ang II increased the expression of proteins known to contribute to both aortic aneurysm and atherosclerosis, namely osteopontin (OPN), collagen type I&III (Col I&III), matrix metalloproteinase 2 (MMP2), and vascular cell adhesion molecule 1 (VCAM1), which were all significantly downregulated in SDN mice. The number and size of Ang II-induced aorta collateral aneurysms and atherosclerotic lesions in the renal artery and aortic root of SDN mice were significantly decreased compared to NTg mice, and directly correlated with a decrease in OPN expression. Replenishing OPN in SDN SMCs, increased the expression of Col I&III, MMP2, and VCAM1, and promoted SMC proliferation, migration, and inflammation.ConclusionsOur data demonstrate that smooth muscle Nox4 directly promotes the development of Ang II-induced aortic aneurysm and atherosclerosis, at least in part, through regulating OPN expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号