首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The effects of 4-hydroxytamoxifen (OHTAM), the major active metabolite of the antiestrogen tamoxifen used in the breast cancer therapy, were studied on the mitochondrial permeability transition (MPT) and bioenergetic functions of mitochondria to evaluate the mechanisms underlying the cell death and toxic effects. The MPT was induced in vitro by incubating rat liver mitochondria with 1 mM inorganic phosphate plus Ca2+ and with tert-butyl hydroperoxide. OHTAM provides protection against the Ca2+-induced mitochondrial swelling, depolarization of the mitochondrial membrane potential (deltapsi), loss of electrophoretic Ca2+ uptake capacity and uncoupling of respiration, similarly to cyclosporine A. The concentrations of OHTAM used do not significantly affect deltapsi, respiratory control and adenosine diphosphate/oxygen ratios and induce repolarization and Ca2+ re-uptake, suggesting that such inhibitory effects of OHTAM were due to the prevention of the MPT induction and not due to the inhibition of the mitochondrial Ca2+ uniporter. Since the MPT induction has been linked to an oxidized shift in the mitochondrial redox state and/or increase in the generation of reactive oxygen species, the MPT prevention by OHTAM may be related to its high antioxidant capacity.  相似文献   

2.
A series of aminoresorcinols and related compounds were tested for rat intestinal alpha-glucosidase inhibition and these results suggested that the 2-aminoresorcinol moiety of 6-amino-5,7-dihydroxyflavone (2) is important to exert the intestinal alpha-glucosidase inhibitory activity and 2-aminoresorcinol (4), itself, is a potent alpha-glucosidase inhibitor and inhibited sucrose-hydrolyzing activity of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

3.
Chebulagic acid, isolated form Terminalia chebula Retz, proved to be a reversible and non-competitive inhibitor of maltase with a K(i) value of 6.6 muM. The inhibitory influence of chebulagic acid on the maltase-glucoamylase complex was more potent than on the sucrase-isomaltase complex. The magnitude of alpha-glucosidase inhibition by chebulagic acid was greatly affected by its origin. These results show a use for chebulagic acid in managing type-2 diabetes.  相似文献   

4.
Melatonin is a potent inhibitor for myeloperoxidase   总被引:1,自引:0,他引:1  
Myeloperoxidase (MPO) catalyzes the formation of potent oxidants that have been implicated in the pathogenesis of various diseases including atherosclerosis, asthma, arthritis, and cancer. Melatonin plays an important part in the regulation of various body functions including circadian sleep rhythms, blood pressure, oncogenesis, retinal function, seasonal reproduction, and immunity. Here, we demonstrate that melatonin serves as a potent inhibitor of MPO under physiological-like conditions. In the presence of chloride (Cl-), melatonin inactivated MPO at two points in the classic peroxidase cycle through binding to MPO to form an inactive complex, melatonin-MPO-Cl, and accelerating MPO compound II formation, an inactive form of MPO. Inactivation of MPO was mirrored by the direct conversion of MPO-Fe(III) to MPO compound II without any sign of compound I accumulation. This behavior indicates that melatonin binding modulates the formation of MPO intermediates and their decay rates. The Cl- presence enhanced the affinity of MPO toward melatonin, which switches the enzyme activity from peroxidation to catalase-like activity. In the absence of Cl-, melatonin served as a 1e- substrate for MPO compound I, but at higher concentration it limited the reaction by its dissociation from the corresponding complex. Importantly, melatonin-dependent inhibition of MPO occurred with a wide range of concentrations that span various physiological and supplemental ranges. Thus, the interplay between MPO and melatonin may have a broader implication in the function of several biological systems. This dual regulation by melatonin is unique and represents a new means through which melatonin can control MPO and its downstream inflammatory pathways.  相似文献   

5.
BACKGROUND: Previous studies have shown that PADMA-28, a multicomponent, traditional Tibetan herbal plant preparation possesses a variety of beneficial effects on several experimental models of inflammatory and immune processes, including autoimmune diabetes and autoimmune encephalomyelitis. In humans, PADMA-28 attenuated the symptoms associated with intermittent claudications in atherosclerotic patients. OBJECTIVE: To assess the effect of PADMA 28 on the immune system, e.g. cytokine (interleukins) production. DESIGN: Cytokine production by human blood monocytes (derived from 12 healthy donors) stimulated in vitro, either by endotoxin (LPS) from Salmonella typhi or by lipoteichoic acid (LTA) from group A Streptococci was modulated by PADMA-28. RESULTS: The present study showed that an aqueous extract of PADMA-28 strongly decreased the production of the inflammatory cytokines IL-1beta, IL-6, IL-8 and TNF-alpha, and more moderately, also decreased the anti-inflammatory cytokine IL-10 induced by LPS. However, the LTA - induced IL-10 production was [not significantly] increased by the low dose PADMA-28, while not effected at all by the higher dose of PADMA-28. CONCLUSIONS: The data from these finding suggest a possible clinical efficacy of PADMA-28 either in autoimmune and in inflammatory conditions or in post-inflammatory sequelae, as previously shown in in vivo and human studies, probably by decreasing inflammatory cytokines.  相似文献   

6.
Elafin is a potent inhibitor of proteinase 3   总被引:4,自引:0,他引:4  
Elafin, a human skin derived inhibitor of human leukocyte elastase, was tested for inhibitory activity against proteinase 3, an elastin degrading proteinase of neutrophils. The inhibitory activity of elafin was compared with antileukoprotease and eglin C. Elafin proved to be a potent inhibitor of elastin-FITC degradation showing an IC 50 of 9.5 x 10(-9) M. Potency was found to be more than 100-fold higher as compared with antileukoprotease and eglin C.  相似文献   

7.
Certain sexually transmitted human papillomavirus (HPV) types are causally associated with the development of cervical cancer. Our recent development of high-titer HPV pseudoviruses has made it possible to perform high-throughput in vitro screens to identify HPV infection inhibitors. Comparison of a variety of compounds revealed that carrageenan, a type of sulfated polysaccharide extracted from red algae, is an extremely potent infection inhibitor for a broad range of sexually transmitted HPVs. Although carrageenan can inhibit herpes simplex viruses and some strains of HIV in vitro, genital HPVs are about a thousand-fold more susceptible, with 50% inhibitory doses in the low ng/ml range. Carrageenan acts primarily by preventing the binding of HPV virions to cells. This finding is consistent with the fact that carrageenan resembles heparan sulfate, an HPV cell-attachment factor. However, carrageenan is three orders of magnitude more potent than heparin, a form of cell-free heparan sulfate that has been regarded as a highly effective model HPV inhibitor. Carrageenan can also block HPV infection through a second, postattachment heparan sulfate-independent effect. Carrageenan is in widespread commercial use as a thickener in a variety of cosmetic and food products, ranging from sexual lubricants to infant feeding formulas. Some of these products block HPV infectivity in vitro, even when diluted a million-fold. Clinical trials are needed to determine whether carrageenan-based products are effective as topical microbicides against genital HPVs.  相似文献   

8.
microRNA-101 is a potent inhibitor of autophagy   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
The lipoxygenase (LOX) pathway was proposed to compete with hydrolysis and be partly responsible for the metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). Treatment of Arabidopsis seedlings with lauroylethanolamide (NAE 12:0) resulted in elevated levels of PU-NAE species, and this was most pronounced in plants with reduced NAE hydrolase activity. Enzyme activity assays revealed that NAE 12:0 inhibited LOX-mediated oxidation of PU lipid substrates in a dose-dependent and competitive manner. NAE 12:0 was 10-20 times more potent an inhibitor of LOX activities than lauric acid (FFA 12:0). Furthermore, treatment of intact Arabidopsis seedlings with NAE 12:0 (but not FFA 12:0) substantially blocked the wound-induced formation of jasmonic acid (JA), suggesting that NAE 12:0 may be used in planta to manipulate oxylipin metabolism.  相似文献   

11.
Aurintricarboxylic acid (ATA) was found to be a very potent inhibitor of purified rabbit liver phosphofructokinase (PFK), giving 50% inhibition at 0.2 microM. The inhibition was in a manner consistent with interaction at the citrate-inhibitory site of the enzyme. The data suggest that inhibition of PFK by ATA was not due to denaturation of the enzyme or the irreversible binding of inhibitor, since the inhibition could be reversed by addition of allosteric activators of PFK, i.e. fructose 2,6-bisphosphate or AMP. Two other tricarboxylic acids, agaric acid and (-)-hydroxycitrate, were found to inhibit PFK. ATA at much higher concentrations (500 microM) was shown to inhibit fatty acid synthesis from endogenous glycogen in rat hepatocytes; however, protein synthesis was not altered.  相似文献   

12.
On the basis of a hit from random screening, biaryl amide derivatives were prepared in a combinatorial manner via parallel solution-phase synthesis, and their effects on melanocytes were investigated to discover new effective skin depigmenting agents. Among the 120 derivatives prepared, five members exhibited a >30% reduction of melanin production at 30 μM with a cell viability of >90%. In particular, compound A3/B5 exhibited effective inhibitory activity on melanin synthesis. Although the inhibition percentage of A3/B5 was slightly lower than that of the positive reference compound, phenylthiourea (PTU), A3/B5 demonstrated a much better cell viability than PTU. In vivo evaluation of A3/B5 also showed a significant decrease of melanin pigments. In addition, the in silico classification model was built based on the experimental data of library members. Our results suggest that these biaryl amide derivatives may act as potent skin depigmenting agents.  相似文献   

13.
Using in vitro protein tyrosine phosphatase (PTPase) assays, we found that sodium stibogluconate, a drug used in treatment of leishmaniasis, is a potent inhibitor of PTPases Src homology PTPase1 (SHP-1), SHP-2, and PTP1B but not the dual-specificity phosphatase mitogen-activated protein kinase phosphatase 1. Sodium stibogluconate inhibited 99% of SHP-1 activity at 10 micrograms/ml, a therapeutic concentration of the drug for leishmaniasis. Similar degrees of inhibition of SHP-2 and PTP1B required 100 micrograms/ml sodium stibogluconate, demonstrating differential sensitivities of PTPases to the inhibitor. The drug appeared to target the SHP-1 domain because it showed similar in vitro inhibition of SHP-1 and a mutant protein containing the SHP-1 PTPase domain alone. Moreover, it forms a stable complex with the PTPase: in vitro inhibition of SHP-1 by the drug was not removed by a washing process effective in relieving the inhibition of SHP-1 by the reversible inhibitor suramin. The inhibition of cellular PTPases by the drug was suggested by its rapid induction of tyrosine phosphorylation of cellular proteins in Baf3 cells and its augmentation of IL-3-induced Janus family kinase 2/Stat5 tyrosine phosphorylation and proliferation of Baf3 cells. The augmentation of the opposite effects of GM-CSF and IFN-alpha on TF-1 cell growth by the drug indicated its broad activities in the signaling of various cytokines. These data represent the first evidence that sodium stibogluconate inhibits PTPases and augments cytokine responses. Our results provide novel insights into the pharmacological effects of the drug and suggest potential new therapeutic applications.  相似文献   

14.
Interleukin-4 as a potent inhibitor of bone resorption   总被引:5,自引:0,他引:5  
A possible role of interleukin-4 (IL-4) in the regulation of bone turnover was assessed by employing a 45Ca prelabeled-fetal mouse long bone culture system. IL-4 inhibited the bone resorption stimulated by parathyroid hormone (PTH), PTH related protein (PTHrP), 1 alpha, 25, dihydroxy-vitamin D3 [1 alpha, 25 (OH)2 D3], interleukin-1 alpha and - 1 beta (IL-1 alpha, IL-1 beta) and prostaglandin E2 (PGE2). Anti-IL-4 on monoclonal antibody abolished the inhibitory effect of IL-4 on the bone resorption. These results suggest that IL-4 may play an important role on the inhibitory regulation of bone resorption.  相似文献   

15.
Studies with KK/San, obese and diabetic model mice having a unique hypotriglyceridemia phenotype, revealed that angiopoietin-like protein 3 (ANGPTL3) regulates lipid metabolism in mice. To determine the lipid-modulating role of other ANGPTLs, we focused on ANGPTL4, which overall shows a significant similarity to ANGPTL3. Surprisingly, an intravenous injection of the ANGPTL4 protein in KK/San mice rapidly increased the circulating plasma lipid levels at a higher rate than ANGPTL3 protein. Furthermore, the ANGPTL4 protein inhibited the lipoprotein lipase activity in vitro.  相似文献   

16.
Extracellular matrix-degrading gelatinases are mainly involved in tumor invasion and metastasis. Previous experimental data from our group and others suggested that homocysteine could have a potential modulatory role on the proteolytic balance at the extracellular matrix. Therefore, we studied the effects of homocysteine on extracellular matrix-degrading proteases using model human tumor cell lines and a combination of in vitro fluorogenic assay and zymographic techniques. Homocysteine is shown to be the thiol compound with the most potent inhibitory activity on matrix metalloproteinase 9. Zymographies reveal that matrix metalloproteinase 2 is, at least, as sensitive to inhibition by homocysteine as matrix metalloproteinase 9 is. This study opens new ways to the potential pharmacological use of thiol compounds.  相似文献   

17.
Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer [γ 32P]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of [32P]-inorganic phosphate (32Pi). Inclusion of UDP in the incubation medium resulted in conversion of [γ 32P]ATP to [32P]UTP, while inclusion of AMP resulted in conversion of [γ 32P]ATP to [32P]ADP. Ebselen markedly reduced [32P]UTP formation but displayed negligible effect on 32Pi or [32P]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC50 = 6.9 ± 2 μM). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V max of the reaction (K i = 7.6 ± 3 μM), having negligible effect on K M values. Our study demonstrates that ebselen is a potent non-competitive inhibitor of extracellular NDPK.  相似文献   

18.
The effect of disulfiram on the 5-lipoxygenase activity from rat polymorphonuclear leukocyte cell-free lysates was determined and compared with that of other thiocarbamoyl and aryl disulfides. Disulfiram was a potent inhibitor of the soluble 5-lipoxygenase causing 50% inhibition at submicromolar concentrations (0.4-0.7 microM). The inhibition by disulfiram was similar to that of bis(diisopropylthiocarbamoyl) disulfide with both compounds being about 100-fold more potent as inhibitors than the structurally related bis(4-methyl-1-homopiperazinylthiocarbonyl) disulfide analog. The potency of 5-lipoxygenase inhibition by disulfiram was comparable to that of diphenyldisulfide (IC50 = 0.2-0.4 microM), in the same range or better than most typically used inhibitors. However, the degree of inhibition by disulfiram was more sensitive to thiols than that of diphenyldisulfide, as shown by the selective protection against disulfiram inhibition by low concentrations of thiols. Diethyldithiocarbamate, the reduction product of disulfiram, was a less potent inhibitor of the 5-lipoxygenase activity, causing only a partial inhibition (40-60%) over a wide range of concentrations (2-30 microM). The results demonstrate that disulfiram is a potent inhibitor of 5-lipoxygenase in vitro and provide the basis for further investigations on the effect of the drug on leukotriene biosynthesis inhibition and its contribution to the ethanol-disulfiram reaction. They also indicate that disulfiram represents a sensitive reagent to characterize the thiol requirement of the 5-lipoxygenase reaction.  相似文献   

19.
The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans.  相似文献   

20.
Latrunculin A is a potent inhibitor of phagocytosis by macrophages   总被引:2,自引:0,他引:2  
We have found that latrunculin A, a Red Sea sponge toxin, is a potent inhibitor of immunological phagocytosis by mouse peritoneal macrophages, but does not block the binding (recognition) of the immune complexes (erythrocytes sensitized with IgG antibodies) to the cells. The inhibition begins to be appreciable around 12 nM latrunculin A, and is complete with a toxin concentration of 60 nM. This inhibitory effect does not interfere with the cell viability, and can be reversed when the macrophages are incubated in fresh medium. Since latrunculin A is a disrupting agent of microfilament organization, these results strengthen the evidence for the active participation of microfilaments in the mechanism of phagocytosis and at the same time provide a new tool for the investigation of phagocytosis at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号