首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have investigated the response of several epithelial and fibroblastic cells to a mitogenic extract of bovine milk. Cation exchange chromatography was used to produce a mitogen-rich fraction from an industrial whey source that, although comprising only 0.5% of total whey protein, contained the bulk of the growth factor activity. This fraction was a source of potent growth promoting activity for all mesodermal-derived cells tested, including human skin and embryonic lung fibroblasts, Balb/c 3T3 fibroblasts, and rat L6 myoblasts. Maximal growth of all these cell types exceeded that observed in 10% fetal bovine serum. Feline kidney and baby hamster fibroblasts and Chinese hamster ovary cells were less responsive, achieving a maximal growth response of 50–75% that observed in 10% fetal bovine serum. Maximal growth achieved in whey-extract-supplemented cultures of Balb/c 3T3 and human skin fibroblasts, and L6 myoblast cultures exceeded that seen in response to recombinant acidic or basic fibroblast growth factor, platelet-derived growth factor, insulin-like growth factor, or epidermal growth factor. Importantly, addition of low concentrations of fetal bovine serum to the whey-derived mitogenic fraction produced an additive response. However, concentrated milk-derived factors were found to be inhibitory to the growth of all epithelial lines tested, including rat intestinal epithelial cells, canine kidney epithelial cells, and mink lung cells. It is concluded that industrial whey extracted in this form constitutes an important source of potent growth-promoting agents for the supplementation of mesodermal-derived cell cultures.  相似文献   

2.
When Vero cells, a line derived from and African Green Monkey kidney, are grown under conditions where the saturation density is limited by serum, they deplete the growth medium of a factor necessary for cell division. The factor is a component of serum. When Vero cells are plated at low density (2 X 10(4)/cm2) in this depleted growth medium (after dialysis against serum-free Dulbecco's Modified Eagle's Medium) they initiate an unbalanced program of growth. Protein synthesis proceeds at the same rate as parallel cells in fresh serum, and and the cells accumulate protein as a function of time. DNA synthesis is also initiated in these cells, and the amount of DNA per cell increases for the next four days plating. However the cells quickly stop dividing. Measurements of DNA per cell using microspectrofluorometry show that the cells are accumulating in the late S and G2 period during this time. Thus we conclude that these cells cannot pass through a transition point in G2. When fresh serum is added to cells after three days in depleted growth medium, they divide before they begin to synthesize DNA. This further confirms that they are in late S and G2. Cell division is promoted in Vero cells in depleted growth medium by bovine fetuin, and to a lesser extent by bovine albumin. Cell division is not promoted by insulin, hydrocortisone, dexamethasone, linolenic acid, calcium, and typsin inhibitor form ovomucoid. From these data we conclude that transit through G2 requires the prescence of an extracellular factor.  相似文献   

3.
Because of the scarcity of techniques for synchronizing the growth of cultured human diploid fibroblasts at multiple stages within the cell cycle, efforts were expended in this report to establish a set of protocols that would permit synchronization of cells at several different points throughout the cycle. The protocols that were developed to synchronize the growth of HSF-24 and HSF-55 cells, human foreskin-derived fibroblast cultures, were modifications of procedures employed to synchronize the growth of cultured rodent cells. Optimization of synchrony induction was directed by consideration of both the biochemical properties of the synchronized populations (determined via three-parameter flow cytometric measurements of DNA, RNA, and protein contents) and their kinetic behavior following reversal of the synchronization-inducing blockade (determined via combined flow cytometric analysis of DNA content, [3H]thymidine autoradiography, and measurement of increase in cell number). The conditions judged to yield the best results for studying events associated with production of a G0 block or for maintaining cells for prolonged periods in G0 were those in which the cells were grown to confluency in D-MEM supplemented with 10% fetal bovine serum. Procedures producing the best results for studying processes associated with the G0 to G1 transition, G1 events, and operations accompanying the transition from G1 to S, employed subconfluent growth for 48 h in alpha-MEM + 0.1% fetal bovine serum (alpha-MEM0.1F) followed by resuspension in alpha-MEM containing 10% fetal bovine serum (alpha-MEM10F). When the goal was to obtain cells in which to study very early S-phase events, satisfactory results were achieved by combining a 48-h period of subconfluent growth in alpha-MEM0.1F, followed by treatment for 24 h in alpha-MEM10F containing 5 micrograms/ml aphidicolin. For study of events occurring in mid- to late-cycle, acceptable results were achieved by combining a 48-h block in alpha-MEM0.1F with resuspension for 24 h in alpha-MEM10F containing 10(-3) M hydroxyurea followed by resuspension in drug-free alpha-MEM10F. The best results were obtained with these latter synchronization procedures (i.e., low-serum/high-serum + APC or HU/high serum) when the fetal calf serum was replaced with heat-inactivated calf serum. The success achieved in synchronizing the growth of these human diploid fibroblasts compared favorably/exceeded the results obtained with synchronized cultures of Chinese hamster ovary cells.  相似文献   

4.
Spontaneous cell transformation is a common feature of all murine cell cultures grown in vitro for extended periods of time. During early passages, these cultures show either progressively reduced growth or complete cessation of growth; after such a 'crisis' they display increasing growth rates and unlimited lifespan. Here we use a novel bromodeoxyuridine/Hoechst flow-cytometric technique to examine the growth response of diploid and transformed cells of the murine species Micromys minutus under a variety of growth conditions. After spontaneous transformation, growth factor exposure results in increased G0/G1 cell recruitment and higher growth rates than shown by the nontransformed diploid cell fraction. Despite clonal heterogeneity, this difference is seen at all fetal calf serum (FCS) concentrations, although it is most pronounced with low serum. Epidermal growth factor and insulin are shown to act synergistically and promote growth equal to exposures of transformed cultures to 10% FCS. The observed differences in growth factor response between diploid and aneuploid cells could explain the reported lack of a classical growth crisis in growth factor-supplemented media during the spontaneous in vitro transformation of primary cell cultures.  相似文献   

5.
The ability of glycopeptides, isolated from bovine cerebral cortex, to alter cell division was studied by cell-cycle analyses. The results showed that glycopeptides arrested baby hamster kidney (BHK)-21 cells and Chinese hamster ovary (CHO) cells in the G2 phase of the cell cycle. Upon removal of the growth inhibition from arrested BHK-21 cells, the mitotic index in colchicine-treated cultures increased from 5 to 40% within 6 h and the increase in mitotic activity was accompanied by a complete doubling of all arrested cells within this 6- h time period. Determination of DNA content in growth-arrested BHK-21 cells showed that growth-arrested cells contained about twice the DNA of control cell cultures. Although CHO cells treated in a like manner with growth inhibitor could not be arrested for the same length of time as BHK-21 cells (18 h vs. 72 h before initiation of escape) and to the same degree (60% of the cell population vs. 99% of BHK-21 cells), the escape kinetics of CHO cells did indicate a G2 arrest. Approximately 3.5 h after escape began, CHO cell numbers in treated cultures attained the cell numbers found in control cultures. This rapid growth phase occurring in less than 4 h indicated that the growth inhibitor induced a G2 arrest-point in CHO cells that was not lethal since the entire arrested cell population divided.  相似文献   

6.
Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.  相似文献   

7.
SYNOPSIS. Monolayer primary and secondary cultures of embryonic bovine kidney, spleen, intestinal and testicle cells, and secondary cultures of embryonic bovine thymus, maintained in lactalbumin hydrolysate, Earle's balanced salt solution and ovine serum were observed for a maximum of 21 days after inoculation of E. bovis sporozoites. The sporozoites entered the cells in all of these cultures but underwent development only in primary cultures of kidney and intestinal cells and in secondary cultures of kidney, spleen, thymus, intestinal, and testicle cells. In acellular media, the sporozoites retained motility no longer than 21 hr. In the cell cultures, free motile sporozoites were seen for as long as 18 days after inoculation. Sporozoites entered cells anterior end first; the process of penetration required a few seconds to about a minute. Sporozoites were also observed leaving host cells. Intracellular sporozoites were first seen 3 min after inoculation; they were observed at various intervals up to 18 days after inoculation. In transformation of sporozoites into trophozoites a marked change in size and appearance of the nucleus took place before the change in shape of the body occurred. Trophozoites were first found 7 days after inoculation, multinucleate schizonts after 8 days, and schizonts with merozoites after 14 days. Schizonts containing merozoites were seen only in kidney, spleen, and thymus cells. The mature schizonts were smaller and represented a much lower proportion of the total number than in comparable stages of infections in calves. Schizonts with many nuclei occurred in intestinal cells; the most advanced stage seen in testicle cells was the binucleate schizont. Nuclear and cytoplasmic changes were observed in the infected cells.  相似文献   

8.
Several human and animal cancer cell lines have been shown to possess specific high affinity receptors for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). The replication of several of these cell types has also been shown to be regulated by this hormone, both in vitro and in vivo. To further understand the mechanisms of these actions, we have examined cancer cells in vitro and in vivo. The in vitro studies extend our previous reports on the treatment of human breast cancer cells (T 47D) with 10(-9) to 10(-6) M 1,25-(OH)2D3, which resulted in a dose- and time-dependent decrease in cell numbers over 6 days. Treatment with 10(-8) M 1,25-(OH)2D3, which reduced cell numbers to approximately one half of those found in control cultures at 6 days, was associated with a doubling of the proportion of cells in the G2 + M phase of the cell cycle and was accompanied by a significant decline in the proportion of G0/G1 cells. At higher concentrations there was a significant decline in S phase cells with accumulation of cells in both G0/G1 and G2 + M phases. The antiestrogen, tamoxifen, at a concentration which caused similar effects on cell number, resulted in proportional decreases in both S and G2 + M phase cells and accumulation of G0/G1 cells. The effects of 1,25-(OH)2D3 on T 47D cell proliferation were associated with time- and concentration-dependent reductions in epidermal growth factor receptor levels to a minimum level of about half that seen in control cultures. The in vivo experiments extend our previous studies, which demonstrated marked inhibition of the growth of human cancer xenografts in immunosuppressed mice by 1,25-(OH)2D3. Xenograft growth was inhibited with 1,25-(OH)2D3 (0.1 microgram ip three times per week) but growth was rapidly restored when the 1,25-(OH)2D3 was withdrawn. Thus, there are clear-cut time- and dose-dependent, yet reversible, effects of 1,25-(OH)2D3 on the replication of human cancer cells in vitro and in vivo, which are possibly mediated through changes in growth factor receptor levels. Further study of these effects may advance understanding of the hormonal control of cellular replication in human cancers.  相似文献   

9.
Summary The purpose of our experiments was to examine variables affecting early events in the establishment of rat tracheal epithelial (RTE) cultures as well as factors regulating long-term RTE cell growth. The experiments showed that when RTE cells were seeded into complete serum-free medium between 13 and 30% of the seeded cells attached. Of the seeded cells, only ∼2% entered into DNA synthesis and underwent repeated cell divisions to form colonies containing >20 cells. Coating the dishes with extracellular matrix components had little effect on cell attachment or colony forming efficiency (CFE). However, coating the dishes with fetal bovine serum markedly increased CFE. The media components bovine serum albumin and bovine pituitary extract were shown to be important in promoting cell attachment as well as CFE. Cholera toxin on the other hand had no effect on cell attachment but significantly increased CFE. These and other studies showed that cell attachment and cell proliferation are independently regulated. Studies on long-term culture growth indicated that the number of progeny produced per colony forming unit (CFU) is inversely proportional to the number of CFUs seeded. Inasmuch as the cultures did not become confluent under any of the culture conditions tested and media obtained from high density cultures were shown to be growth inhibitory, these findings suggest that a diffusible growth restraining factor is being produced by the cultures limiting clonal expansion. Experiments showing growth inhibitory effects of media conditioned by high cell density cultures support this interpretation. The putative factor reaches critical concentrations earlier in cultures seeded with high numbers of CFU than in cultures seeded with low numbers of CFU. Because the cultures are known to produce transforming growth factor-beta, this growth regulator probably plays a role in controlling RTE cell proliferation. However, it is likely than other events, such as depletion of growth factors from the media, also are significant in regulating the growth of the cultures.  相似文献   

10.
Growth kinetics in cultures of DMBA-induced mammary tumours supplemented with bovine colostrum were compared with the kinetics of cultures maintained with the conventional supplement of foetal calf serum. Although the latter permitted a greater degree of cell proliferation, a substantial amount of the cell growth was due to the fibroblastic proliferation. In the presence of bovine colostrum, epithelial islands surrounded by a few solitary cells became established. Unlike the foetal calf serum supplemented cultures, these cultures frequently did not become completely confluent within 7 days. The absence of fibroblasts in colostrum supplemented cultures was confirmed by electron microscopy. Results from this study suggest that colostrum may be useful in selective maintenance of primary cultures of epithelial origin.  相似文献   

11.
Miller, Robert E. (University of Nebraska College of Medicine, Omaha), Norman G. Miller, and Roberta J. White. Growth of Leptospira pomona and its effect on various tissue culture systems. J. Bacteriol. 92:502-509. 1966.-Leptospira pomona strain 3341 was grown in association with primary fetal bovine kidney (PBK) and human embryonic skin-muscle fibroblastic (HE) cells in Eagle's minimal essential medium (MEM) with 5% sheep serum. Growth curves of leptospires in PBK and HE cell cultures showed no substantial increase in growth above that obtained in Eagle's MEM in the absence of tissue culture cells. This suggested that no stimulatory growth factors for leptospires were produced by the tissue cells. Fibroblastic cells of the PBK monolayer showed separation, deterioration, and, finally, complete disintegration. Epithelial-like cells remained unaffected. HE cells showed the same cytopathic effect as PBK fibroblastic cells, indicating that this effect was not limited to PBK fibroblastic cells. Warthin-Starry stains of PBK and HE cell monolayers showed masses of leptospires adhering to fibroblastic cells, whereas only a few were seen on epithelial-like cells. Large numbers of leptospires on the surface of fibroblastic cells are very likely associated with the cytopathic effect. Dislodgment of leptospires from fibroblastic cells did not increase the total number of spirochetes in the culture. This indicated that leptospiral growth did not occur on the surface of these cells.  相似文献   

12.
Cultivation of gene-engineered Chinese hamster ovary (CHO-K1) cells that produce recombinant human soluble thrombomodulin (rsTM) was investigated to optimize conditions for high-level expression of the protein in a serum-free medium. For economic protein production, oxygenation of cultures with pure O2 permitted sufficient cell growth for high rsTM production with only 1 g/l of microcarriers and a low foetal bovine serum concentration. A longer growth phase (over 5 days) with serum was important to establish sufficient growth of this cell line on the microcarriers for subsequent serum-free culture, and to support a long-term production phase (about 2 months). In the production phase, a high glucose concentration (6.15 g/l) in the serum-free medium was very effective for prolonging the harvest cycle interval. Under these conditions, up to 100 mg/l rsTM was expressed in the conditioned medium. The rates of glucose consumption (G) and lactae production (L) were measured periodically and their ratio (L/G ratio) correlated with rsTM productivity. When the average L/G ratio was lower, reflecting a lower lactate production rate due to appropriate oxygenation of the culture, the specific rsTM production rate increased. Thus it may be possible to estimate protein productivity from L/G ratios calculated from the glucose and lactate measurements. Correspondence to: M. Ogata  相似文献   

13.
Caffeine is known to potentiate the cytotoxicity of a variety of DNA damaging agents presumably by reducing the ability of the cells to repair potentially lethal lesions. However, in the present study we observe that 5 mM caffeine reverses the cell kinetic and cytotoxic effects of the intercalating drug Novantrone (mitoxantrone) on L1210, HL-60 and CHO cells. Novantrone alone, at a concentration of 20-30 ng/ml, given to cultures for 1 h, inhibits cell growth by about 50% and causes cells to accumulate in S and G2 phase and to enter a higher DNA ploidy level. Treatment of these cell lines with 5 mM caffeine alone for 1 h has a minimal effect on cell proliferation; suppression of cell growth varies from 5 to 10%. Exposure of cells to Novantrone for 1 h in the presence of caffeine results in a significant reduction of the Novantrone effects; the cell growth rate is partially restored (e.g. caffeine reduces suppression of L1210 cell growth from 48 to 83% of control) and in each of the cell lines studied, the Novantrone-induced cell accumulation in S and G2 is abolished. Combined treatment with caffeine and Novantrone also increases the clonogenicity of CHO cells 8.5 times over that seen in cultures treated with Novantrone alone. In contrast to the combined treatment with caffeine + Novantrone, pretreatment of cells with caffeine provides no protection. Likewise, post-treatment with caffeine provides little reversal of growth inhibition and G2 cell accumulation, especially if the post-treatment is delayed in time. The present data, in conjunction with evidence in the literature that caffeine protects cells against the cytotoxic effects of doxorubicin, suggest that caffeine may play a more general role in protecting cells against planar aromatic molecules such as intercalating agents.  相似文献   

14.
15.
Satellite cells cultured from dystrophic (mdx) and from control mouse hindlimb muscles grow and fuse to form muscle fibers within 4-5 days. Total cell number and muscle-fiber formation are stimulated by bovine fibroblast growth factor (FGF). At low FGF levels (0.02-0.20 ng/ml) control satellite cells as well as fibroblasts are unresponsive, while mdx satellite cells show three- to four-fold increases in growth. Control cells do not begin to respond until FGF levels reach 1-5 ng/ml. Heparin, a major constituent of muscle fiber basal lamina, inhibits myogenesis in these mouse muscle cultures. The heightened sensitivity of mdx satellite cells to FGF may permit high rates of new fiber formation in vivo without a parallel hyperplasia in the muscle fibroblast population. This finding may be important in explaining successful regeneration in mdx muscle in vivo and the fact that mdx animals escape the catastrophic symptoms seen in the related human Duchenne muscular dystrophy.  相似文献   

16.
Single cell growth and division was measured via flow cytometry in order to characterize the metabolic variability of Taxus cuspidata suspension cultures, which produce the valuable secondary metabolite Taxol. Good agreement was observed between the cell cycle distribution and biomass accumulation over the batch culture period. Specific growth rates of 0.13 days(-1) by fresh weight and 0.15 days(-1) by dry weight were measured. Elicitation with methyl jasmonate (MJ) significantly decreased both cell cycle progression and biomass accumulation, as the specific growth rate decreased to 0.027 days(-1) by fresh and dry weight. Despite the decrease in biomass accumulation for MJ elicited cultures, sucrose utilization was not significantly different from control cultures. MJ elicitation also increased the accumulation of paclitaxel and other taxanes. The accumulation of upstream taxanes (baccatin III and 10-deactylbaccatin III) increased during exponential growth, reached a maximum around day 12, and then declined throughout the stationary phase. The paclitaxel concentration increased during both exponential growth and stationary phase, reaching a maximum around days 20-25. Throughout the culture period, greater than 70% of the cells were in G(0)/G(1) phase of the cell cycle. Studies using bromodeoxyuridine (BrdU) incorporation showed that approximately 65% of the Taxus cells are noncycling, even during exponential growth. Although the role of these cells is currently unknown, the presence of a large, noncycling subpopulation can have a significant impact on the utilization of plant cell culture technology for the large-scale production of paclitaxel. These results demonstrate that there is a high degree of metabolic heterogeneity in Taxus cuspidata suspension cultures. Understanding this heterogeneity is important for the optimization of plant cell cultures, particularly the reduction of production variability.  相似文献   

17.
Flow microfluorometric analysis of human lymphoid cells exposed in vitro to cytostatic concentrations of podophyllotoxin (0.01-5 mug/ml for 24 h) shows that a major part of this population (40-60%) has the DNA content of cells in the G2-M part of the cell cycle, and that approximately 60% of these cells are arrested in mitosis. Although a similar pattern of DNA distribution is seen in cultures exposed to cytostatic concentrations of VM-26(0.01 mug/ml) and VP--16-213(0.1 mug/ml), no mitotic cells are seen in these cultures. Exposure to higher concentrations: of VM-26 (0.1 mug/ml) and VP-16-213 (1.0 mug/ml) inhibits cell cycle traverse, and after 24 hr of exposure a major part of the population is arrested with the DNA content of cell in the S part of the cell cycle. Exposure to higher drug concentrations leads to a reduction in the number of cells with the late S-G2DNA content. Whereas the cell cycle block induced by cytostatic concentrations of podophyllotoxin (0.01 mug/ml) is readily reversible by reincubation of cells in drug-free medium, cells blocked by VM-26 and VP-16-213 are unable to resume cell-cycle traverse under similar conditions.  相似文献   

18.
Bovine brain cell lines with specific characteristics are useful in vitro experimental systems for molecular and cellular investigation of the interactions between bovine specific neuropathogenic agents and the host. Here, we established two novel cell lines from cultures of cryopreserved fetal bovine brain tissue by the transfection of SV40 large T antigen. Both cell lines showed cobblestone morphology in DMEM/F12 medium supplemented with 10% fetal bovine serum, epidermal growth factor and basic fibroblast growth factor. They were immunostained with endothelial marker, Von Willebrand Factor. Endothelial properties, such as capillary-like tube formation on matrigel and the incorporation of DiI-AcLDL were confirmed with these cells. Removal of growth factors increased the number of cells expressing alpha-smooth muscle actin, suggesting the potential of these cell lines to differentiate into smooth muscle cells. This study suggests an efficient protocol to immortalize brain endothelial cell lines from fetal bovine brain tissue culture.  相似文献   

19.
To clarify whether a single oncogene can transform primary cells in culture, we compared the transforming effect of a recombinant retrovirus (ZSV) containing the v-src gene in rat embryo fibroblasts (REFs) to that in the rat cell line 3Y1. In the focus assay, REFs exhibited resistance to transformation as only six foci were observed in the primary cultures as opposed to 98 in 3Y1 cells. After G418 selection, efficiency of transformation was again somewhat lower with REFs compared to that with 3Y1 cells, but the number of G418-resistant REF colonies was much greater than the number of foci in REF cultures. Furthermore, while 98% of G418-resistant colonies of ZSV-infected REFs were morphologically transformed, only 25% were converted to anchorage- independent growth, as opposed to 100% conversion seen in ZSV-infected 3Y1 cells. The poor susceptibility of REFs to anchorage-independent transformation did not involve differences in expression and subcellular distribution of p60v-src, or its kinase activity in vitro and in vivo. It rather reflected a property of the primary cultures, as cloning of REFs before ZSV infection demonstrated that only 2 out of 6 REF clones tested were permissive for anchorage-independent growth. The nonpermissive phenotype was dominant over the permissive one in somatic hybrid cells, and associated with organized actin filament bundles and a lower growth rate, both before and after ZSV infection. These results indicate that the poor susceptibility of REFs to anchorage-independent transformation by p60v-src reflects the heterogeneity of the primary cultures. REFs can be morphologically transformed by p60v-src with high efficiency but only a small fraction is convertible to anchorage- independent growth. REF resistance seems to involve the presence of a suppressor factor which may emerge from REF differentiation during embryonic development.  相似文献   

20.
Summary Plasma membranes isolated from HeLa cells cultivated in suspension cultures supplemented with 3.5% fetal bovine serum or 2% of the commercially available serum substitute Ultroser G contained the same amounts of protein, cholesterol, and phosphate on a cellular basis. Minor differences in the plasma membrane fatty acid composition were seen, with the most pronounced alteration observed for palmitic acid, which amounted to 27 and 20% in fetal bovine serum- and Ultroser G-supplemented cells, respectively. Plasma membranes from cells growth with Ultroser G contained almost twice as much phosphatidylethanolamine and displayed two thirds of the phosphatidylcholine content, compared to plasma membranes obtained from fetal bovine serum supplemented cells. The former membranes also showed a 3 times higher specific [3H]acetate labeling of cholesterol, indicating a higherde novo synthesis of cholesterol. Both quantitative and qualitative alterations were revealed among the plasma membrane polypeptides when these were subjected to immuno- and lectin blottings. Fluorescence anisotropy measurements at different temperatures produced similar results irrespective of the growth medium supplement when the plasma membrane specific probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene was used on intact cells. However, the average cellular rigidity was higher for Ultroser G supplemented cells, determined with 1,6-diphenyl-1,3,5-hexatriene as a probe. This investigation was supported by grants from the Swedish Natural Science Research Council, Anders Otto Sw?rds Stiftelse, Stockholm, Crafoordska Stiftelsen, Lund and Kungl. Fysiografiska S?llskapet, Lund.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号