首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein kinase C (PKC) has been considered for a potential target of anticancer chemotherapy. PKC-alpha has been associated with growth and metastasis of some cancer cells. However, the role of PKC-alpha in human breast cancer cell proliferation and anticancer chemotherapy remains unclear. In this study, we examined whether alterations of PKC-alpha by phorbol esters and PKC inhibitors could affect proliferation of human breast cancer MCF-7 cells and the cytotoxic effect of chemotherapeutic agents. Exposure for 24 h to doxorubicin (DOX) and vinblastine (VIN) caused a concentration-dependent reduction in proliferation of MCF-7 cells. However, these two anticancer drugs altered cellular morphology and growth pattern in distinct manners. Phorbol 12,13-dibutyrate (PDBu, 100 nM), which enhanced activities of PKC-alpha, increased cancer cell proliferation and attenuated VIN (1 microM)-induced cytotoxicity. These effects were not affected in the presence of 10 nM staurosporine. Phorbol myristate acetate (PMA, 100 nM) that completely depleted PKC-alpha also enhanced cancer cell proliferation and attenuated VIN-induced cytotoxicity. Three potent PKC inhibitors, staurosporine (10 nM), chelerythrine (5 microM) and bisindolylmaleimide-I (100 nM), had no significant effect on MCF-7 cell proliferation; staurosporine and chelerythrine, but not bisindolylmaleimide-I, attenuated VIN-induced cytotoxicity. Moreover, neither phorbol esters nor PKC inhibitors had an effect on cytotoxic effects of DOX (1 microM) on MCF-7 cell proliferation. Thus, these data suggest that MCF-7 cell proliferation or the anti-cancer action of DOX and VIN on breast cancer cells is independent of PKC-alpha.  相似文献   

2.
The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-alpha, or the PKC inhibitor G?6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.  相似文献   

3.
Glucose concentration may be an important factor in breast cancer cell proliferation, and the prevalence of breast cancer is high in diabetic patients. Leptin may also be an important factor since plasma levels of leptin correlated with TNM staging for breast cancer patients. The effects of glucose and leptin on breast cancer cell proliferation were evaluated by examining cell doubling time, DNA synthesis, levels of cell cycle related proteins, protein kinase C (PKC) isozyme expression, and peroxisome proliferator-activated receptor (PPAR) subtypes were determined following glucose exposure at normal (5.5 mM) and high (25 mM) concentrations with/without leptin in MCF-7 human breast cancer cells. In MCF-7 cells, leptin and high glucose stimulated cell proliferation as demonstrated by the increases in DNA synthesis and expression of cdk2 and cyclin D1. PKC-alpha, PPARgamma, and PPARalpha protein levels were up-regulated following leptin and high glucose treatment in drug-sensitive MCF-7 cells. However, there was no significant effect of leptin and high glucose on cell proliferation, DNA synthesis, levels of cell cycle proteins, PKC isozymes, or PPAR subtypes in multidrug-resistant human breast cancer NCI/ADR-RES cells. These results suggested that hyperglycemia and hyperleptinemia increase breast cancer cell proliferation through accelerated cell cycle progression with up-regulation of cdk2 and cyclin D1 levels. This suggests the involvement of PKC-alpha, PPARalpha, and PPARgamma.  相似文献   

4.
The roles of protein kinase C (PKC) isoenzymes in the differentiation process of THP-1 cells are investigated. Inhibition of PKC by RO 31-8220 reduces the phagocytosis of latex particles and the release of superoxide, prostaglandin E(2) (PGE(2)), and tumour necrosis factor (TNF)-alpha. The proliferation of THP-1 cells is slightly enhanced by RO 31-8220. Stable transfection of THP-1 cells with asPKC-alpha, and incubation of THP-1 cells with antisense (as) PKC-alpha oligodeoxynucleotides reduces PKC-alpha levels and PKC activity. asPKC-alpha-transfected THP-1 cells show a decreased phagocytosis and a decreased release of superoxide, PGE(2) and TNF-alpha. The proliferation of asPKC-alpha-transfected THP-1 cells is enhanced. Stable transfection of THP-1 cells with asPKC-beta, and incubation of THP-1 cells with asPKC-beta oligodeoxynucleotides, reduces PKC-beta levels and PKC activity. asPKC-beta-transfected THP-1 cells show a decreased phagocytosis, a decreased TNF-alpha release, and a decreased proliferation. However, no difference is measured in the release of superoxide and PGE(2). These results suggest that: (1) PKC-alpha but not PKC-beta is involved in the release of superoxide and PGE(2); (2) TNF-alpha release and the phagocytosis of latex particles are mediated by PKC-alpha, PKC-beta, and other PKC isoenzymes; and (3) PKC-alpha and PKC-beta play antagonistic roles in the differentiation process of THP-1 cells. PKC-alpha promotes the differentiation process of THP-1 cells, PKC-beta retards the differentiation of THP-1 cells into macrophage-like cells.  相似文献   

5.
A large‐scale RNAi screen was performed for eight different melanoma cell lines using a pooled whole‐genome lentiviral shRNA library. shRNAs affecting proliferation of transduced melanoma cells were negatively selected during 10 days of culture. Overall, 617 shRNAs were identified by microarray hybridization. Pathway analyses identified mitogen‐activated protein kinase (MAPK) pathway members such as ERK1/2, JNK1/2 and MAP3K7 and protein kinase C β (PKCβ) as candidate genes. Knockdown of PKCβ most consistently reduced cellular proliferation, colony formation and migratory capacity of melanoma cells and was selected for further validation. PKCβ showed enhanced expression in human primary melanomas and distant metastases as compared with benign melanocytic nevi. Moreover, treatment of melanoma cells with PKCβ‐specific inhibitor enzastaurin reduced melanoma cell growth but had only small effects on benign fibroblasts. Finally, PKCβ‐shRNA significantly reduced lung colonization capacity of stably transduced melanoma cells in mice. Taken together, this study identified new candidate genes for melanoma cell growth and proliferation. PKCβ seems to play an important role in these processes and might serve as a new target for the treatment of metastatic melanoma.  相似文献   

6.
7.
8.
The Ramos-Burkitt lymphoma (BL) B cell line is driven into growth arrest and apoptosis by cross-linking surface immunoglobulin. We demonstrate that protein kinase C (PKC) activity is required for Ramos B cell proliferation and survival. A variety of PKC inhibitors trigger a significant decrease in [(3)H]thymidine incorporation with a concomitant increase in cell death. Antisense depletion of expression of the PKC-alpha isoform is sufficient to trigger cell death in the absence of any other signal, demonstrating a requirement for this isoform for survival of Ramos-BL B cells. Cross-linking surface immunoglobulin also leads to depletion of PKC-alpha levels, suggesting that this may be one mechanism by which this signals for cell death in Ramos-BL B cells.  相似文献   

9.
A total of 18 histological samples containing both transitional cell carcinoma (TCC) and normal urothelial epithelium were analyzed for protein kinase C (PKC)-alpha and -betaI expression, and for their phosphorylated substrates. The results showed an increased expression of PKC-alpha in 13 out of 18 samples and -betaI in 11 out of 18 TCC samples when compared with normal urothelium. In addition, 11 out of 18 of the TCC tumors displayed heterogeneous expression of the PKC isoenzymes, with different levels of immunosignal in different areas of the tumor. Within the same sample, areas of highest PKC isoenzyme expression also showed highest classical PKC activity, as estimated by immunodetection of phosphorylated forms of PKC substrates. The areas of highest expression of PKC-alpha and/or -betaI isoenzymes showed also the highest number of cells positive for Ki67, an indicator of proliferation. Immunofluorescence and Western blotting demonstrated that in cultured TCC cells, PKC-alpha was located in the cytoplasm, whereas PKC-betaI was located primarily in the nucleus as a 65-kDa fragment and in the cytoplasm as a full-size 79-kDa protein. Our results indicate that increased expression of PKC-alpha and -betaI leads to increased total classical PKC kinase activity and suggest that increased activity of the isoenzymes plays a role in accelerated growth of TCC. Furthermore, these results suggest that even in carcinoma tissue, PKC expression and activity are under strict control.  相似文献   

10.
11.
12.
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.  相似文献   

13.
14.
The role of protein kinase C (PKC) in the control of erythropoietin (Epo) production was studied using the human hepatoma cell line HepG2. Inhibition of PKC by staurosporine and the selective PKC inhibitor CGP 41251 significantly reduced Epo formation. No inhibition occurred with the inactive staurosporine derivative CGP 42700. Treatment with phorbol 12-myristate 13-acetate (PMA) for 24 h dose-dependently inhibited Epo formation, thus suggesting that down-regulation of PKC might be responsible for this inhibition. Immunoblotting experiments showed that incubation of HepG2 cells with PMA for 24 h resulted in a selective and almost complete down-regulation of PKC-alpha. Thus, PKC-alpha may play a permissive role in Epo synthesis in HepG2 cells.  相似文献   

15.
D Kelleher  A Long 《FEBS letters》1992,301(3):310-314
In the human T-cell lymphoma line, HuT 78, proliferation and phorbol ester-induced growth arrest and differentiation were inhibited by the protein kinase C (PKC) inhibitor, staurosporine. By contrast, an alternative PKC inhibitor, H-7, inhibited proliferation but not phorbol ester-induced growth arrest. The cell line was found to contain both alpha and beta isoforms of PKC by Western blot techniques. A cell line, K-4, was cloned from HuT 78 in the presence of H-7 and this clone was found to be positive for PKC-alpha only. PKC-beta did not return on cultivation in the absence of H-7. Proliferation of K-4 was insensitive to inhibition with both H-7 and staurosporine. However, phorbol ester-induced growth arrest remained staurosporine sensitive. Phorbol-stimulated IL-2 secretion was minimal in the PKC-beta-deficient cell line. These data suggest that PKC-beta may be a regulatory enzyme for proliferation and stimulated interleukin-2 secretion in HuT 78 cells. Heterogeneity of responses to PKC activation may reflect the use of different isozymes in different intracellular pathways. The K-4 cell line should provide a useful tool in the dissection of involvement of PKC isozymes in cellular function.  相似文献   

16.
We have studied the expression of mRNA encoding all known protein kinase C (PKC) isozymes (alpha, beta, gamma, delta, epsilon, zeta, and eta) in murine tumor cell lines that exemplify hemopoietic cells arrested at different stages of development as well as in normal hemopoietic cells. We demonstrate that some of the isozymes, PKC-alpha, -beta, and -eta, are differentially expressed in different lineages. PKC-alpha and -beta generally are not detectable in myeloid cell lines, where PKC-delta is the predominant isoform. Both PKC-alpha and -beta are abundant in most T and B lymphocytic lines, but steady state levels of PKC-beta mRNA are lowest in plasma cell tumors, which exemplify the terminally differentiated B lymphocyte. In contrast, the levels of PKC-alpha mRNA remain high in plasma cell tumors, and a novel, 2.5-kb PKC-alpha mRNA gains prominence. PKC-eta mRNA is the major PKC isoform expressed in T lymphocytes, but it also is highly abundant in some myeloid lines. PKC-delta is expressed at high levels in all the lines we studied, whereas PKC-epsilon and -zeta are found in most cells but only at rather low levels. Analysis of myeloid clones derived from bipotential B lineage progenitor cell lines suggests that the B cell phenotype is associated with the expression of PKC-alpha. The close correlation of protein levels with mRNA levels indicates that PKC expression in hemopoietic cells is mainly regulated at the level of mRNA. The lineage- and differentiation stage-specific patterns of PKC-isozyme expression presented here suggest the involvement of specific PKC isozymes in differentiation as well as lineage determination of hemopoietic cells.  相似文献   

17.
Neurotensin (NT) plays an important role in gastrointestinal secretion, motility, and growth. The mechanisms regulating NT secretion are not entirely known. Our purpose was to define the role of the PKC signaling pathway in secretion of NT from BON cells, a human pancreatic carcinoid cell line that produces and secretes NT peptide. We demonstrated expression of all 11 PKC isoforms at varying levels in untreated BON cells. Expression of PKC-alpha, -beta2, -delta, and -mu isoforms was most pronounced. Immunofluorescent staining showed PKC-alpha and -mu expression throughout the cytoplasm and in the membrane. Also, significant fluorescence of PKC-delta was noted in the nucleus and cytoplasm. Treatment with PMA induced translocation of PKC-alpha, -delta, and -mu from cytosol to membrane. Activation of PKC-alpha, -delta, and -mu was further confirmed by kinase assays. Addition of PKC-alpha inhibitor G?-6976 at a nanomolar concentration, other PKC inhibitors G?-6983 and GF-109203X, or PKC-delta-specific inhibitor rottlerin significantly inhibited PMA-mediated NT release. Overexpression of either PKC-alpha or -delta increased PMA-mediated NT secretion compared with control cells. We demonstrated that PMA-mediated NT secretion in BON cells is associated with translocation and activation of PKC-alpha, -delta, and -mu. Furthermore, inhibition of PKC-alpha and -delta blocked PMA-stimulated NT secretion, suggesting a critical role for these isoforms in NT release.  相似文献   

18.
Our laboratory has previously reported that the exposure of smooth muscle cells (SMC) to the cyclic strain results in significant stimulation of protein kinase C (PKC) activity by translocating the enzyme from the cytosol to the particulate fraction. We now sought to examine the strain-induced translocation of individual PKC isoforms in SMC. Confluent bovine aortic SMC grown on collagen type I-coated plates were exposed to cyclic strain for up to 100 s at average 10% strain with 60 cycles/min. Immunoblotting analysis demonstrates that SMC express PKC-alpha, -beta and -zeta in both cytosolic and particulate fractions. Especially, PKC-alpha and -zeta were predominantly expressed in the cytosolic fraction. However, cyclic strain significantly (P < 0.05) increased PKC-alpha and -zeta in the particulate fraction and decreased in the cytosolic fraction. Thus, the cyclic strain-mediated stimulation of PKC activity in SMC may be due to the translocation of PKC-alpha and -zeta from the cytosolic to the particulate fraction. These results demonstrate that mechanical deformation causes rapid translocation of PKC isoforms, which may initiate a cascade of proliferation responses of SMC since NF-kappaB, which is involved in the cellular proliferation has been known to be activated by these PKC isoforms.  相似文献   

19.
It is well established that protein kinase C (PKC) isozymes are involved in the proliferation of glioma cells. However, reports differ on which PKC isozymes are responsible for glioma proliferation. As a means to further elucidate this, the objectives of our research were to determine how inhibition of PKC-alpha, PKC-beta and PKCmu with PD 406976 regulates the cell cycle, cell proliferation and PKC during glioma growth and development. To establish the cell cycle effects of PD 406976 on brain cells (SVG, U-138MG and U-373MG glioma cells), specimens were treated with either dimethylsulfoxide (DMSO; control) or PD 406976 (2 microm). Results from flow cytometry demonstrated that PD 406976 delayed the entry DNA synthesis phase in SVG cells and delayed the number of cells entering and exiting the DNA synthesis phase in both U-138MG and U-373MG cells, indicating that PD 406976 may inhibit G(1)/S and S phase progression. Assessment of cell viability demonstrated a cytostatic effect of PD 406976 on SVG, U-138MG and U-373MG glioma cell proliferation. The PD 406976-induced decreased proliferation was sustained at 48-96 h. A PKC activity assay was quantified and demonstrated that exposure of SVG and U-373MG glioma cells to PD 406976 suppressed PKC activity. Western blotting demonstrated reduced PKC-beta1, PKC-gamma and PKC-tau protein content in cells treated with PD 406976. We determined that the growth inhibitory effect of PD 406976 was not as a result of apoptosis.  相似文献   

20.
Polyunsaturated fatty acids influence the aetiology of prostate cancer. Their effects on cellular mechanisms regulating prostate tumorigenesis are unclear. Using prostate cancer cells (LNCaP), we determined effects of n-9-OA, n-6-LA, and n-3-EPA on total PKC and its isoforms in relation to cell proliferation and PSA production. PKC-alpha, delta, gamma, iota, mu, and zeta were present in LNCaP cells; PKC-beta, epsilon, eta, and theta isoforms were not. PKC-alpha was detected only in cytosol; PKC-delta, iota, gamma, and mu were present in cytosol and in membranes. Fatty acids increased cell proliferation, total PKC activity and elicited pro-proliferative effects on specific PKC isoforms (PKC-delta and -iota). EPA and LA increased total PKC activity and reduced membrane-abundance of PKC-delta. OA reduced cytosolic and membrane PKC-delta. Only EPA reduced PKC-gamma membrane abundance. Fatty acids enhanced cytosolic PKC-iota abundance but only EPA and to a lesser extent LA increased its membrane content. Changes in PKC-delta, -iota, and -gamma did not affect PSA production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号