首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The effects of ATP on glucose transport and metabolism were studied in rat adipocytes. Over a concentration range of 10–250 μm, ATP was found to inhibit several aspects of adipocyte glucose metabolism, particularly when stimulated by insulin. Much of the effect of ATP on glucose metabolism appeared related to impairment of glucose transport, reflected by inhibition of both basal and insulin-stimulated rates of 3-O-methylglucose transport. ATP inhibited the V of insulin-stimulated 3-O-methylglucose transport, but had no effect on the Km. The inhibitory effects of ATP were much less apparent when cells were preincubated with insulin, suggesting that ATP inhibited only the components of hexose transport not yet activated by the hormone. At very high medium glucose concentrations, where transport was no longer rate limiting for metabolism, there was no inhibition of glucose oxidation by 250 μm ATP. However, when hexose transport was blocked with cytochalasin B (50 μm), a small inhibitory effect of ATP persisted on basal and insulin-stimulated glucose and fructose oxidation, suggesting that intracellular metabolism was impaired. The mechanism of the intracellular effect did not appear to be caused by uptake of exogenous ATP. These studies provide further evidence that energy metabolism may play an important role in the regulation of facilitated glucose transport.  相似文献   

2.
Sugarcane (Saccharum officinarum L.) leaf parenchyma cells bathed in 1X solution maintained an average membrane potential of −135 millivolts in the dark. No difference in membrane potential was found between clones 51 NG 97 and H50 7209. An electrogenic pump appears to contribute to membrane potential in these cells. Sugars (25 millimolar) added externally caused the following membrane potential depolarizations (in millivolts) in clone 51 NG 97: glucose, 18 ± 4; galactose, 24 ± 7; 3-O-methylglucose, 10 ± 4; sucrose, 22 ± 3; fructose, 21 ± 7; raffinose, 9 ± 3; mannitol, 0; lactose, 0; melibiose, 0; and 1-O-methyl-α-galactose, 0. Glycine (25 millimolar) and serine (10 millimolar) caused depolarizations of 47 ± 7 and 23 ± 2 millivolts, respectively. Depolarization shows saturation kinetics with respect to glucose concentration, with a Km of 3 to 6 millimolar. The metabolic inhibitors KCN and salicyl hydroxamic acid together caused depolarization of the membrane potential and greatly inhibited depolarization by 25 millimolar glucose and 25 millimolar raffinose. In a series of substitution experiments, glucose (25 millimolar) caused almost total inhibition of depolarization by raffinose, sucrose, and 3-O-methylglucose (all 25 millimolar), but only partial inhibition of depolarization to 25 millimolar glycine. Glycine (25 millimolar), also, only partially inhibited depolarization by 25 millimolar glucose. Total depolarization to 25 millimolar glycine and 25 millimolar glucose was comparable to the amount of depolarization of membrane potential caused by 1 millimolar KCN plus 1 millimolar salicyl hydroxamic acid. The results are consistent with a co-transport mechanism of membrane transport, with sugars and amino acids being transported by separate carrier systems.  相似文献   

3.
Cardiac myocytes were isolated from adult rat ventricles by a method which preserves their functional integrity, including long survival in physiological concentrations of Ca2+. Sarcolemmal glucose transport was assessed by measuring linear initial uptake rates of the nonmetabolized glucose analog3-O-methyl-d-glucose. Transport was saturable and showed competition byd-glucose and other features of chemical and stereo-selectivity. Transport was stimulated by insulin in a dose-dependent manner, resulting in an almost 5-fold increase inVmax, with little change inKm. Stimulation of 3-methylglucose transport by insulin was largely Ca2+ -dependent. Omission of Ca2+ from the incubation medium caused a minor rise in basal 3-methylglucose uptake but the insulin-stimulated rise inVmax was only 30%. The Ca2+ antagonist D600 also antagonized stimulation of hexose transport by insulin. In all the above respects, 3-methylglucose transport in myocytes is identical to that in intact heart muscle. In addition, the decrease in insulin response by Ca2+ emission was partially reversed by subsequent return to a Ca2+ -containing medium. ATP levels remained stable in the absence of Ca2+, showing that the Ca2+ dependence did not reflect nonspecific cell damage.  相似文献   

4.
SYNOPSIS. Uptake of 14C-labeled alanine, glutamate, lysine, methionine, proline, and phenylalanine by Trypanosoma equiperdum during 2-minute incubations occurred by diffusion and membrane-mediated processes. Amino acid metabolism was not detected by paper chromatography of trypanosome extracts. Most of 18 carbohydrates tested for ability to alter amino acid transport neither changed nor significantly inhibited transport. Glucose, however, stimulated glutamate, lysine and proline transport; fructose stimulated lysine uptake and 2-deoxy-D-glucose increased phenylalanine and methionine absorption. No evidence was found that the carbohydrates acted by binding to amino acid transport “sites.” Glucose inhibition of alanine, phenylalanine, and methionine uptake was linked to glycolysis. The rapid formation of alanine from glucose stimulated alanine release and, when glycolysis was blocked, glucose no longer inhibited alanine transport. Methionine and phenylalanine release was also stimulated by glucose. Glucose changed the ability of lysine, glutamate, and proline to inhibit each others’uptake, indicating that certain amino acids are preferentially absorbed by respiring cells. Analysis of free pool amino acid levels suggested that some amino acid transport systems in T. equiperdum are linked in such a way to glycolysis as to control the cell concentrations of these amino acids.  相似文献   

5.
Cells incubated at 41–46 °C show a gradual increase in the initial rate of 3-O-methylglucose uptake when subsequently assayed at 37 °C. Cellular ATP levels remain constant throughout this temperature range, but at temperatures higher than 46 °C, ATP levels decline as does the extent of transport stimulation. Cells incubated at 45 °C for 5 min continue to show a gradual increase in transport activity throughout a subsequent 25-min incubation period at 37 °C. The increase in transport activity is characterized by an increase in the proportion of the rapid phase of 3-O-methylglucose uptake, with little or no change in the half-time of either the rapid phase or the slow phase. Transport stimulation at high temperatures is blocked by inhibitors of oxidative phosphorylation. Cells depleted of intracellular exchangeable Ca2+ by treatment with the ionophore A23187 in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid show nearly the same degree of stimulation at high temperatures as untreated cells, suggesting that exchangeable Ca2+ ions do not play an obligatory role in the mechanism of transport stimulation. It is suggested that structural changes occur at 41–46 °C in the membrane proteins controlling glucose transport activity.  相似文献   

6.
An amino acid uptake system specific for glycine, alanine, serine and proline was induced by glucose in Chlorella vulgaris. The uptake system translocated the zwitterionic form of the amino acid. There was more than 100-fold accumulation which indicated a coupling to metabolic energy. The depolarization of the membrane potential during proline uptake and the sensitivity of its uptake rate to the membrane potential point to coupling with an ion flow. Inhibitors of plasmalemma-bound H+-ATPase inhibit proline uptake. These data are interpreted to mean that proline is taken up as a proton symport. In some Chlorella strains the proline-coupled H+ uptake could be measured with electrodes, but not in Chlorella vulgaris. There is evidence that the transport of amino acids rapidly stimulates the proton-translocating ATPase of Chlorella vulgaris, so that the proline-coupled proton uptake is immediately neutralized.  相似文献   

7.
Proton Fluxes Associated with Sugar Uptake in Vicia faba Leaf Tissues   总被引:15,自引:10,他引:5       下载免费PDF全文
Delrot S 《Plant physiology》1981,68(3):706-711
Vicia faba leaf fragments bring the pH of their incubation medium to about 4.7, whatever the initial pH value. At this pH, addition of 20 millimolar sucrose causes a transient (20 to 40 minutes) alkalinization (0.05 to 0.10 pH unit) of the medium. The alkalinization is not observed in the presence of p-chloromercuribenzenesulfonic acid which blocks the sucrose carrier involved in phloem loading without affecting the ATPase (Delrot, Despeghel, Bonnemain 1980 Planta 149: 144-148). Addition of 20 millimolar glucose, fructose, or 3-O-methylglucose induces weaker alkalinization than sucrose. Sequential additions of sugars show that: (a) sucrose- and hexose-induced proton fluxes are nearly saturated at 20 millimolar sugar (b) there is no competition between sucrose and hexoses for inducing proton influxes whereas (c) glucose and 3-O-methylglucose are competing for a common system.  相似文献   

8.
The kinetics of uptake, accumulation against a concentration gradient, competitive inhibition and metabolic inhibition suggest that d-glucose enters the daughter sporocysts of Microphallus similis by active transport.Studies of competitive inhibition suggest that galactose, fructose, d-fucose, α-methyl-d-glucoside, d-mannose and 3-O-methylglucose are actively absorbed at the same locus as d-glucose. Glucosamine, d-ribose and l-fucose, however, may be actively transported at a different locus or may be taken up by simple diffusion.Acetate, pyruvate, citrate and succinate are absorbed by simple diffusion.  相似文献   

9.
1. Transport characteristics of l-methionine and l-proline in rat liver slices in vitro were studied. 2. Intracellular concentration gradients for methionine were obtained. 3. Methionine uptake was inhibited by iodoacetate, dinitrophenol, Na+-free media and also by glycine, lysine, cysteine and dithiothreitol but not by α-aminoisobutyrate. 4. The rate of methionine metabolism in the slice was slow. 5. Puromycin inhibited methionine incorporation into protein, but not methionine uptake. 6. Methionine inhibited the transport of α-aminoisobutyrate but not of cystine. 7. Efflux and exchange diffusion of methionine was studied. 8. Amino acid transport in rat liver slices was not affected by thyroidectomy. 9. Addition of insulin, glucagon, adrenaline or cortisol did not affect the transport of methionine. 10. Addition of 6-N,2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate increased methionine transport after a 120min incubation period in some experiments. 11. Studies of l-proline transport were invalidated because of the rapid evolution of CO2 from the substrate.  相似文献   

10.
In vitro sugar transport into developing isolated maize embryos was studied. Embryo fresh and dry weight increased concomitantly with endogenous sucrose concentration and glucose uptake throughout development. However, endogenous glucose and fructose concentration and sucrose uptake remained constant. The uptake kinetics of radiolabeled sucrose, glucose, and fructose showed a biphasic dependence on exogenous substrate concentration. Hexose uptake was four to six times greater than sucrose uptake throughout development. Carbonylcyanide-m-chlorophenylhydrazone and dinitrophenol inhibited sucrose and glucose uptake significantly, but 3-O-methyl glucose uptake was less affected. The uptake of 1 millimolar sucrose was strongly pH dependent while glucose was not. Glucose and fructose were readily converted to sucrose and insoluble products soon after absorption into the embryo. Thus, sucrose accumulated, while glucose pools remained low. Based on the findings of this and other studies a model for sugar transport in the developing maize kernel is presented.  相似文献   

11.
The ability of mebendazole and fenbendazole to bind to tubulin in cytosolic fractions from 8-day Ascaris suum embryos was determined by inhibition studies with [3H]colchicine. Colchicine binding in the presence of 1·10?6 M mebendazole was completely inhibited during a 6 h incubation period at 37°C. Inhibition of colchicine binding to A. suum embryonic tubulin by mebendazole and fenbendazole appeared to be noncompetative. The inhibition constants of mebendazole and fenbendazole for A. suum embryonic tubulin were 1.9·10?8 M and 6.5·10?8 M, respectively. Mebendazole and fenbendazole appeared to be competitive inhibitors of colchicine binding to bovine brain tubulin. The inhibition constants of mebendazole and fenbendazole for bovine brain tubulin were 7.3·10?6 M and 1.7·10?5 M, respectively. These values are 250–400 times greater than the inhibition constants of fenbendazole and mebendazole for A. suum embryonic tubulin. Differential binding affinities between nematode tubulin and mammalian tubulin for benzimidazoles may explain the selective toxicity. The importance of tubulin as a receptor for anthelmintic benzimidazoles in animal parasitic nematodes is discussed.  相似文献   

12.
Restrictive control (“repression”) of 3-O-methylglucose transport (or of galactose uptake) in confluent NIL hamster fibroblast cultures was found to be highly pronounced after preconditioning the cultures in medium containing d-glucosamine. The “repression” exerted by glucosamine developed slowly over several hours. The transport “repression” was counteracted by anaerobiosis, by 2,4-dinitrophenol (H. M. Kalckar, C. W. Christopher, and D. Ullrey, 1979, Proc. Nat. Acad. Sci. USA76, 6453–6455), and by fluoride as well as by malonate. In “de-repressed” cultures, i.e., in the absence of glucosamine in the medium or by using fructose during preconditioning, malonate did not affect regulation of the hexose transport system. In culture medium deprived of l-glutamine and serum, repressive control of the transport system by glucose as well as by glucosamine was greatly aggravated. However, the simultaneous addition of malonate abolished the severe “repression” by either of the hexoses. In all cases, preconditioning with fructose permitted high (“de-repressed”) transport activity. Unlike glucose, galactose, or glucosamine, fructose was not found to compete in the transport assay. The metabolic inhibitors which prevent the aerobic curtailment of the hexose transport system are all more or less directly interfering with the flow of metabolites through the tricarboxylate cycle, which may therefore play an important role in the “repressive” control of transport.  相似文献   

13.
The effect of three uncouplers of oxidative phosphorylation, trifluoromethoxycarbon-ylcyanidephenylhydrazone (FCCP), 3,3′,4′,5-tetrachlorosalicylanilide (TCSA), and pentachlorophenol (PCP), on transport of glycine and proline by Bacillus subtilis were examined. FCCP inhibited proline uptake uncompetitively, but glycine uptake competitively. TCSA inhibited proline uptake noncompetitively, but glycine uptake competitively. PCP inhibited proline uptake noncompetitively, but glycine uptake uncompetitively. The results indicate that these uncouplers inhibit amino acid transport by interacting at specific sites rather than by reducing any central supply of energy used to fuel metabolic processes.  相似文献   

14.
Candida albicans cells grown on alkanes of different chain lengths (C13, C14, C15, C16, C17, and C18) exhibited a low growth rate and gradual increase in the total lipid content with the increase in the length of alkanes. There was a significant change in the phospholipids and sterols content of various alkane-grown cells compared to glucose-grown cells. In glucose-grown cells, the transport of various amino acids, e.g., proline, glutamic acid, lysine, glycine, phenylalanine, serine, methionine, and leucine was found to be energy dependent and against a concentration gradient. In alkane-grown cells, the transport of lysine, proline, serine, and methionine was reduced, however, there was no effect on the uptake of glycine, glutamic acid, phenylalanine, and leucine. The results were interpreted as different carrier(s) responsible for amino acid uptake responsed differently to the change of lipid environment.  相似文献   

15.
16.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

17.
The mechanisms by which adult male Schistosoma mansoni transport amino acids have been investigated using radioactive amino acids during 2-min incubation times. The transport constants (Kt) for mediated uptake of glycine, proline, methionine, arginine, glutamate, and tryptophan were calculated to be 0.60-1.05, 1.67-1.98, 2.0, 0.10-0.35, 0.30-0.50, and 0.5-1.0 mM, respectively. Maximal velocities (Vmax) were 5.5–7.5, 25, 6.4, 1.5-2.0, 2.5, and 3.0–6.0 μmoles absorbed/g worm protein/2 min, respectively. Cysteine is taken up solely by diffusion. Proline uptake is unique in that no significant diffusion component was found. The other amino acids studied were absorbed by diffusion as well as by specific transport systems. In the 2-min incubation periods employed glycine, proline, glutamate, and methionine were not significantly metabolized indicating that the uptake studies using these substrates reflect transport. Metabolism of the other amino acids used in these studies was not examined. The specificity of the transport systems was studied by testing the inhibitory effects of various amino acids on the uptake of each of the amino acids studied. The results suggest the presence of at least five transport systems. There is a highly specific transport locus for proline, and one for acidic amino acids. There are probably at least two transport systems, each of broad and overlapping specificity, for most of the neutral amino acids. Basic amino acids also appear to be taken up by complex transport systems, at least one of which overlaps with the neutral sites. The results are discussed with respect to the nutrition of the parasite and the host-parasite relationship.  相似文献   

18.
The uptakes of 14C-glucose, -2-deoxyglucose, -mannose, -N-acetylglucosamine, -3-0-methylglucose, -fructose, and -galactose by female Moniliformis dubius were nonlinear, saturable functions of hexose concentration. Kinetic and inhibition studies indicated that glucose and 2-deoxyglucose were absorbed via a single common transport locus. Mannose, N-acetylglucosamine, 3-0-methylglucose, fructose, and galactose (in decreasing order of effectiveness) inhibited the uptake of glucose in a completely competitive manner; their absorptions appeared to be mediated by the glucose transport locus and, to some degree, by one or more additional transport systems. Kinetic studies suggested that the apparent inhibitions of 14C-glucose uptake by maltose and glucose-6-phosphate were due to free glucose liberated through the action of surface hydrolases. The uptake of 14C-glucose was also inhibited by salicin, alpha-methylglucoside, and beta-methylglucoside, but not by pentoses, L-hexoses, sugar alcohols, disaccharides (except maltose), gluconic acid, glucuronic acid, phlorizin, or ouabain. Glucose uptake was not Na+-dependent.  相似文献   

19.
Amino acid synthesis from glucose-U-14C was investigated in 2 day post-emergent and pregnant females of Glossina morsitans. This insect can synthesize alanine, aspartic acid, cystine, glutamic acid, glycine, proline, and serine from glucose. Arginine, histidine, hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, taurine, threonine, and valine showed no radioactivity and hence may be classified as nutritionally indispensable amino acids. Although tyrosine and hydroxyproline were not synthesized from glucose, they are at least partially dispensable nutrients for this insect because their synthesis from phenylalanine has been demonstrated. After the labelled glucose injection the highest radioactivity was recovered in the proline fraction. This is probably related to its rôle as an important energy reserve for flight. The radioactive amino acids recovered from females and from their offspring following glucose-U-14C injection were similar to those recovered from younger females. Radioactivity was also detected in the expired CO2 and the excreta. The amino acids alanine, arginine, cystine, glycine, histidine, leucine/isoleucine, lysine, methionine, proline, and valine were identified in the excreta, of which arginine and histidine were in the largest amounts. Only excreted alanine, glycine, and proline showed radioactivity.  相似文献   

20.
Thom M  Komor E  Maretzki A 《Plant physiology》1982,69(6):1320-1325
Vacuoles, isolated from sugarcane (Saccharum sp.) cells, took up 3-O methylglucose and sucrose and the evidence suggests specific transport systems for these sugars. There was no evidence of sugar efflux from preloaded vacuoles. Vacuoles in situ accumulated 3-O methylglucose, sucrose, glucose, and fructose, as shown by incubation of protoplasts with labeled sugar and subsequent analysis of vacuolar and cytoplasmic radio-activity. During the initial minutes of incubation, the amount and concentration of labeled sugar was higher in the cytoplasm than in the vacuole, but subsequently there was active uptake and accumulation into the vacuole. The rate of hexose transfer into the vacuole in situ approached that of hexose uptake by isolated vacuoles; however, the rate of sucrose uptake by isolated vacuoles was below the in situ rate. The site of sucrose synthesis was in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号