首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing evidence suggests the existence of osteoclast diversity. Here we investigated whether precursors obtained from marrow of the mandibula or long bone could give rise to phenotypically different osteoclasts. Formation of multinucleated cells was assessed after culturing mouse marrow cells of the two bone types with macrophage colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL) for up to 10 days on plastic, bone or dentin. Two times more osteoclasts formed from long bone marrow cells on bone compared to dentin, whereas higher numbers of jaw osteoclasts formed on dentin. Resorption of dentin or bone was similar for osteoclasts formed from both types of precursors. In contrast to jaw marrow derived osteoclasts, long bone osteoclasts predominantly had a multi-compartmented shape, with at least two nuclei containing compartments per cell. Osteoclasts on bone contained two times more actin rings than osteoclasts on dentin, regardless of their precursor origin. However, the area per osteoclast covered by actin rings was similar (20%) for both substrates. This study suggests that marrow cells obtained from different bones give rise to different osteoclasts. The substrate on which the osteoclasts are generated plays a role in steering their formation rather than their resorption.  相似文献   

2.
3.
Osteoclasts are the primary cells responsible for bone resorption. Osteoclast formation and bone resorption activities involve processes tightly controlled by a network of cytokines. The presence of interferon gamma (IFN-gamma) receptors on osteoclasts is a necessary prerequisite for IFN-gamma to directly affect osteoclastic activity. To date, the presence of the IFN-gamma receptor on osteoclasts has not been established. This study provides evidence that osteoclasts express the IFN-gamma receptor. Specific binding of IFN-gamma to the osteoclastic receptor stimulates osteoclastic superoxide generation. The p91 and p47 components of the NADPH oxidase increase after IFN-gamma stimulation and may account for the enhanced superoxide generation. Antisense experiments targeting p91 and p47 subunits abrogate the increased osteoclastic superoxide production stimulated by IFN-gamma. Thus, superoxide generation by osteoclasts is stimulated by activation of a functional IFN-gamma receptor on the osteoclast.  相似文献   

4.
Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases.  相似文献   

5.
Antigen- or mitogen-stimulated leukocytes release bone-resorbing activity into culture supernatants in vitro. Among the agents likely to be present in such supernatants are monocyte-derived tumor necrosis factor (TNF-alpha) and lymphocyte-derived tumor necrosis factor (TNF-beta) (lymphotoxin), both of which have recently been shown to stimulate bone resorption in organ culture. To identify the mechanism of action of these agents, we compared bone resorption by isolated osteoclasts with bone resorption by osteoclasts cocultured with osteoblastic cells, and with bone resorption by osteoclasts incubated with supernatants from osteoblastic cells, in the presence and absence of recombinant TNF-alpha and TNF-beta. We found that neither TNF-alpha nor TNF-beta had any significant effect on bone resorption by isolated osteoclasts, but in the presence of osteoblasts the agents caused a twofold to threefold stimulation of bone resorption. A similar degree of stimulation was achieved by supernatants from osteoblasts incubated with TNF before addition to osteoclasts, compared with supernatants to which TNF were added after osteoblast incubation. These experiments suggest that TNF-alpha and TNF-beta stimulate bone resorption through a primary effect on osteoblastic cells, which are induced by TNF to produce a factor that stimulates osteoclastic resorption. Half-maximal stimulation of resorption occurred at 1.5 X 10(-10) M and 2.5 X 10(-10) M for TNF-alpha and TNF-beta, respectively. This degree of potency is comparable to that of parathyroid hormone, the major physiologic systemic regulator of bone resorption, and suggests that the TNF may exert a significant influence on osteoclastic bone resorption in vivo.  相似文献   

6.
Interferons (IFNs) have anti‐viral and anti‐tumour effects. Type III interferon, as a member of the recently discovered interferon family, has been proved to inhibit tumour proliferation and promote the apoptosis of various tumour cells. However, whether type III IFN could inhibit the proliferation of lung cancer was not clear. In this study, we found that interferon λ (IFN λ) could inhibit the proliferation of A549 cells and induce autophagy and apoptosis of A549 cells. IFN λ could promote the expression of autophagy gene Beclin1 and interfere the expression of autophagy gene Beclin1 with small interfering RNA, thus inhibiting the effect of type III interferon on anti‐proliferation and promoting apoptosis of lung cancer cell. These results suggested that IFN λ could inhibit the proliferation of A549 cells by activating autophagy pathway, and IFN λ might be one of the potential therapeutic drugs for lung cancer.  相似文献   

7.
Type I collagen, the major organic component of bone matrix, undergoes a series of post-translational modifications that occur with aging, such as the non-enzymatic glycation. This spontaneous reaction leads to the formation of advanced glycation end products (AGEs), which accumulate in bone tissue and affect its structural and mechanical properties. We have investigated the role of matrix AGEs on bone resorption mediated by mature osteoclasts and the effects of exogenous AGEs on osteoclastogenesis. Using in vitro resorption assays performed on control- and AGE-modified bone and ivory slices, we showed that the resorption process was markedly inhibited when mature osteoclasts were seeded on slices containing matrix pentosidine, a well characterized AGE. More specifically, the total area resorbed per slice, and the area degraded per resorption lacuna created by osteoclasts, were significantly decreased in AGE-containing slices. This inhibition of bone resorption was confirmed by a marked reduction of the release of type I collagen fragments generated by the collagenolytic enzymes secreted by osteoclasts in the culture medium of AGE-modified mineralized matrices. This effect is likely to result from decreased solubility of collagen molecules in the presence of AGEs, as documented by the reduction of pepsin-mediated digestion of AGE-containing collagen. We found that AGE-modified BSA totally inhibited osteoclastogenesis in vitro, most likely by impairing the commitment of osteoclast progenitors into pre-osteoclastic cells. Although the mechanisms remain unknown, AGEs might interfere with osteoclastic differentiation and activity through their interaction with specific cell-surface receptors, because we showed that both osteoclast progenitors and mature osteoclasts expressed different AGEs receptors, including receptor for AGEs (RAGEs). These results suggest that AGEs decreased osteoclast-induced bone resorption, by altering not only the structural integrity of bone matrix proteins but also the osteoclastic differentiation process. We suggest that AGEs may play a role in the alterations of bone remodeling associated with aging and diabetes.  相似文献   

8.
Alendronate, an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its mechanism of action is unknown. Because it localizes to bone surfaces, we compared the sensitivity of components of the resorptive process to incubation on alendronate-coated bone surfaces. We found that bone resorption by osteoclasts isolated from neonatal rat bone was unaffected by alendronate (10-4 M). Osteoclast production in bone marrow cultures, as assessed by the production of calcitonin-receptor positive cells, was observed even at 10-4 M, but bone resorption in these cultures was almost completely abolished by 10-6 M alendronate. The greater sensitivity of osteoclast activation to inhibition by alendronate that these results suggest was supported by similar inhibition of osteoblast-mediated activation of osteoclasts from neonatal rat bone. Thus, activation of osteoclasts by osteoblastic/stromal cells is apparently the most sensitive component of the pathway whereby bone resorption is affected. Moreover, the ability of alendronate to suppress osteoclastic activation does not depend on resorption-mediated release of alendronate from bone surfaces. This ability extends the range of cell types and processes that might be affected by alendronate, beyond those in the immediate vicinity of resorbing cells, to include any cell that comes into contact with alendronate-coated bone surfaces. J. Cell. Physiol. 172:79–86, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Osteoclast differentiation is a complex process involving cytoskeleton and nuclear reorganization. Osteoclasts regulate bone homeostasis and have a key role in bone degenerative processes. Osteolysis and osteoporosis characterize a subset of laminopathies, inherited disorders due to defects in lamin A/C. Laminopathies featuring bone resorption are characterized, at the molecular level, by anomalous accumulation of the unprocessed lamin A precursor, called prelamin A. To obtain a suitable cell model to study prelamin A effects on osteoclasts, prelamin A processing inhibitors FTI-277 or AFCMe were applied to peripheral blood monocytes induced to differentiate towards the osteoclastic lineage. Previous studies have shown that treatment with FTI-277 causes accumulation of non-farnesylated prelamin A, while AFCMe inhibition of prelamin A maturation causes accumulation of a farnesylated form. We demonstrate that monocytes subjected to FTI-277 treatment and mostly those subjected to AFCMe administration, differentiate towards the osteoclastic lineage more efficiently than untreated monocytes, in terms of number of multinucleated giant cells, mRNA expression of osteoclast-related genes and TRACP 5b activity. On the other hand, the bone resorption activity of osteoclasts obtained in the presence of high prelamin A levels is lower with respect to control osteoclasts. This finding may help the understanding of the osteolytic and osteoporotic processes that characterize progeroid laminopathies.  相似文献   

10.
The effect of interferon on the biochemical properties and the maturation process of intracellular viral particles isolated from the cytoplasmic fraction of NIH/3T3 cells chronically infected with Moloney murine leukemia virus was investigated. By labeling these virions with either [35S]methionine or [3H]glucosamine, we demonstrated that they contain the same viral proteins and glycoproteins found in extracellular virions. Interferon treatment was found to reduce the rate of intracellular virus assembly. This effect was not a consequence of an interferon inhibition of viral RNA synthesis or its translation or a consequence of an interference with the posttranslational cleavage processing of viral precursor proteins, since all of these steps were not affected by interferon. However, the reduced rate of virus assembly could be attributed to the inhibition of viral protein glycosylation observed in interferon-treated cells. Nevertheless, despite this reduced rate, virus particles accumulated in interferon-treated cells. This accumulation was probably due to the strong inhibition of their final release from such cells.  相似文献   

11.
Abstract Experiments were designed to investigate the significance of lipid A partial structures, precursor Ia (compound 406), and lipid X (compound 401) to serve as antagonists of interleukin 1 (IL-1) release from human mononuclear cells and monocytes induced by lipopolysaccharide (LPS, endotoxin) of Salmonella aborus equi or synthetic Escherichia coli lipid A (compound 506). A definite inhibition mediated by lipid A partial structures on IL-1 release induced by LPS or lipid A was found in repeated experiments. The inhibitory effect was exterted not only on IL-1 release, but also on IL-1 peptide synthesis at the intracellular level. The results also show that lipid A partial structures have suppressive effects even when added 1–4 after LPS or lipid A. We conclude from these results that lipis A partial structures (precursor Ia and lipid X) have potent immunomodulatory effects on LPS- and lipid A-induced IL-1 release and may become useful reagents to study the mechanism of interaction of LPS and lipid A with cells of the immune system.  相似文献   

12.

Background

The interactions between metastatic breast cancer cells and host cells of osteoclastic lineage in bone microenvironment are essential for osteolysis. In vitro studies to evaluate pharmacological agents are mainly limited to their direct effects on cell lines. To mimic the communication between breast cancer cells and human osteoclasts, a simple and reproducible cellular model was established to evaluate the effects of zoledronate (zoledronic acid, ZOL), a bisphosphonate which exerts antiresorptive properties.

Methods

Human precursor osteoclasts were cultured on bone-like surfaces in the presence of stimuli (sRANKL, M-CSF) to ensure their activation. Furthermore, immature as well as activated osteoclasts were co-cultured with MDA-MB-231 breast cancer cells. TRAP5b and type I collagen N-terminal telopeptide (NTx) were used as markers. Osteoclasts’ adhesion to bone surface and subsequent bone breakdown were evaluated by studying the expression of cell surface receptors and certain functional matrix macromolecules in the presence of ZOL.

Results

ZOL significantly suppresses the precursor osteoclast maturation, even when the activation stimuli (sRANKL and M-SCF) are present. Moreover, it significantly decreases bone osteolysis and activity of MMPs as well as precursor osteoclast maturation by breast cancer cells. Additionally, ZOL inhibits the osteolytic activity of mature osteoclasts and the expression of integrin β3, matrix metalloproteinases and cathepsin K, all implicated in adhesion and bone resorption.

Conclusions

ZOL exhibits a beneficial inhibitory effect by restricting activation of osteoclasts, bone particle decomposition and the MMP-related breast cancer osteolysis.

General significance

The proposed cellular model can be reliably used for enhancing preclinical evaluation of pharmacological agents in metastatic bone disease.  相似文献   

13.
Total RNA extracted from developing calvarial bones of 15- to 18-week human fetuses was studied by Northern hybridization: in addition to high levels of type I collagen mRNAs, the presence of mRNAs for type III and type IV collagen, TGF-beta and c-fos was observed. In situ hybridization of sections containing calvarial bone, overlying connective tissues, and skin was employed to identify the cells containing these mRNAs. Considerable variation was observed in the distribution of pro alpha 1(I) collagen mRNA in osteoblasts: the amount of the mRNA in cells at or near the upper surface of calvarial bone was distinctly greater than that in cells at the lower surface, indicating the direction of bone growth. High levels of type I collagen mRNAs were also detected in fibroblasts of periosteum, dura mater, and skin. Type III collagen mRNA revealed a considerably different distribution: the highest levels were detected in upper dermis, lower levels were seen in fibroblasts of the periosteum and the fibrous mesenchyme between bone spiculas, and none was seen in osteoblasts. Type IV collagen mRNAs were only observed in the endothelial cells of blood capillaries. Immunohistochemical localization of type III and IV collagens agreed well with these observations. The distribution of TGF-beta mRNA resembled that of type I collagen mRNA. In addition, high levels of TGF-beta mRNA were observed in osteoclasts of the calvarial bone. These cells, responsible for bone resorption, were also found to contain high levels of c-fos mRNA. Production of TGF-beta by osteoclasts and its activation by the acidic environment could form a link between bone resorption and new matrix formation.  相似文献   

14.
Although interleukin-1 (IL-1) has been implicated in the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are largely unknown. Recently, a cytokine-driven, stromal cell-free mouse osteoclastogenesis model was established. A combination of macrophage colony stimulating factor (M-CSF) and receptor activator of NFkappaB ligand (RANKL) was proven to be sufficient in inducing differentiation of bone marrow hematopoietic precursor cells to bone-resorbing osteoclasts in the absence of stromal cells or osteoblasts. This study utilizes this model to examine the impact of human IL-1beta on in vitro osteoclastogenesis of bone marrow progenitor cells. We found that osteoclast precursor cells failed to undergo osteoclastogenesis when treated with IL-1 alone. In contrast, IL-1 dramatically up-regulated osteoclastogenesis by 2.5- to 4-folds in the presence of RANKL and M-CSF. The effect can be significantly blocked by IL-1 receptor antagonist (p < 0.01). Tumor necrosis factor-alpha (TNF-alpha) was undetectable in the culture medium of differentiating osteoclasts induced by IL-1. Adding exogenous TNF-alpha neutralizing antibody had no influence on the IL-1-induced effect as well. These results show that in the absence of stromal cells, IL-1 exacerbates osteoclastogenesis by cooperating with RANKL and M-CSF, while TNF-alpha is not involved in this IL-1-stimulated osteoclast differentiation pathway.  相似文献   

15.
16.
Estrogen deficiency arising with the menopause promotes marked acceleration of bone resorption, which can be restored by hormone replacement therapy. The inhibitory effects of estrogen seem to involve indirect cytokine- mediated effects via supporting bone marrow cells, but direct estrogen-receptor mediated effects on the bone-resorbing osteoclasts have also been proposed. Little information is available on whether estrogens modulate human osteoclastogenesis or merely inhibit the functional activity of osteoclasts. To clarify whether estrogens directly modulate osteoclastic activities human CD14+ monocytes were cultured in the presence of M-CSF and RANKL to induce osteoclast differentiation. Addition of 0.1-10 nM 17beta-estradiol to differentiating osteoclasts resulted in a dose-dependent reduction in tartrate resistant acid phosphatase (TRACP) activity reaching 60% at 0.1 nM. In addition, 17beta-estradiol inhibited bone resorption, as measured by the release of the C-terminal crosslinked telopeptide (CTX), by 60% at 0.1 nM, but had no effect on the overall cell viability. In contrast to the results obtained with differentiating osteoclasts, addition of 17beta-estradiol (0.001-10 nM) to mature osteoclasts did not affect bone resorption or TRACP activity. We investigated expression of the estrogen receptors, using immunocytochemistry and Western blotting. We found that ER-alpha is expressed in osteoclast precursors, whereas ER- beta is expressed at all stages, indicating that the inhibitory effect of estrogen on osteoclastogenesis is mediated by ER-alpha for the major part. In conclusion, these results suggest that the in vivo effects of estrogen are mediated by reduction of osteoclastogenesis rather than direct inhibition of the resorptive activity of mature osteoclasts.  相似文献   

17.
The ultrastructure of osteoclasts was examined in fetal rat bones after stimulation or inhibition of resorption in culture. A central ruffled border area completely encircled by a clear zone was considered to represent the resorbing system of the cell. The proportion of ruffled border and clear zone in osteoclast cross sections was compared with changes in bone resorption as measured by the release of previously incorporated radioactive calcium (45Ca). In control cultures 55% of the osteoclast cross sections showed an area closely apposed to bone and this consisted mainly of clear zone; only 11% showed ruffled borders. Treatment with parathyroid hormone (PTH) increased 45Ca release, increased the frequency of finding areas closely apposed to bone (79%), and markedly increased the frequency of the ruffled border area (64%). Colchicine given concurrently with PTH decreased the number of osteoclasts. Colchicine or calcitonin treatment after PTH stimulation decreased the proportion of ruffled border area significantly by 1 h; this was followed by a decrease in 45Ca release. These inhibited osteoclasts resembled osteoclasts from control, unstimulated cultures, suggesting that the cells had returned to their inactive state. Colchicine-treated osteoclasts also showed a loss of microtubules and a massive accumulation of 100 Å filaments, suggesting that synthesis of microtubular subunits had increased.  相似文献   

18.
The effect of deoxyadenosine (dAdo) with deoxycoformycin on the induction of 2',5'-oligoadenylate synthetase by interferon was investigated. After semi-purification through poly(I):poly(C) gel, the activity was similar in control and dAdo-treated cells. However, the activity in the crude extract decreased with rising concentrations of dAdo. On the other hand, the level of 2'-phosphodiesterase, which is also induced by interferon and degrades 2',5'-oligoadenylate, showed no significant change after dAdo treatment. Thus, the crude extract was speculated to contain an inhibitor of 2',5'-oligoadenylate synthetase. Further characterization of the inhibitor revealed that inhibition was not due to dATP accumulation in cells.  相似文献   

19.
Pretreatment of primary porcine Leydig cell cultures with human leukocyte interferon suppressed the subsequent hCG-stimulated testosterone production in a dose-dependent manner, with an ED50 at 13 IU/ml. The treatment had no effect on hCG-binding to its receptor, and the inhibition of testosterone production was not abolished by 8Br-cAMP addition. The results indicate that the site of interferon action on hCG-stimulated testosterone production in primary cultures of porcine Leydig cells is located distal to cAMP formation.  相似文献   

20.
Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号