首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High nitrogen losses were observed in a rotating biological contactor (RBC) treating ammonium-rich (up to 500 mg NH4(+)-N/L) but organic-carbon-poor leachate from a hazardous waste landfill in K?lliken, Switzerland. The composition and spatial structure of the microbial community in the biofilm on the RBC was analyzed with specific attention for the presence of aerobic ammonium and nitrite oxidizing bacteria and anaerobic ammonium oxidizers. Anaerobic ammonium oxidation (anammox) involves the oxidation of ammonium with nitrite to N2. First the diversity of the biofilm community was determined from sequencing cloned PCR-amplified 16S rDNA fragments. This revealed the presence of a number of very unusual 16S rDNA sequences, but very few sequences related to known ammonium or nitrite oxidizing bacteria. From analysis of biofilm samples by fluorescence in situ hybridization with known phylogenetic probes and by dot-blot hybridization of the same probes to total RNA purified from biofilm samples, the main groups of microorganisms constituting the biofilm were found to be ammonium-oxidizing bacteria from the Nitrosomonas europaea/eutropha group, anaerobic ammonium-oxidizing bacteria of the "Candidatus Kuenenia stuttgartiensis" type, filamentous bacteria from the phylum Bacteroidetes, and nitrite-oxidizing bacteria from the genus Nitrospira. Aerobic and anaerobic ammonium-oxidizing bacteria were present in similar amounts of around 20 to 30% of the biomass, whereas members of the CFB phylum were present at around 7%. Nitrite oxidizing bacteria were only present in relatively low amounts (less than 5% determined with fluorescence in situ hybridization). Data from 16S rRNA dot-blot and in situ hybridization were not in all cases congruent. FISH analysis of thin-sliced and fixed biofilm samples clearly showed that the aerobic nitrifiers were located at the top of the biofilm in an extremely high density and in alternating clusters. Anammox bacteria were exclusively present in the lower half of the biofilm, whereas CFB-type filamentous bacteria were present throughout the biofilm. The structure and composition of these biofilms correlated very nicely with the proposed physiological functional separations in ammonium conversion.  相似文献   

2.
Recently, anaerobic ammonium-oxidizing bacteria (AAOB) were identified by comparative 16S rDNA sequence analysis as a novel, deep-branching lineage within the Planctomycetales . This lineage consists currently of only two, not yet culturable bacteria which have been provisionally described as Candidatus 'Brocadia anammoxidans' and Candidatus 'Kuenenia stuttgartiensis'. In this study, a large fragment of the rDNA operon, including the 16S rDNA, the intergenic spacer region (ISR) and approximately 2 000 bases of the 23S rDNA, was polymerase chain reaction (PCR) amplified, cloned and sequenced from both AAOB. The retrieved 16S rDNA sequences of both species contain an insertion at helix 9 with a previously overlooked pronounced secondary structure (new subhelices 9a and 9b). This insertion, which is absent in all other known prokaryotes, is detectable by fluorescence in situ hybridization (FISH) and thus present in the mature 16S rRNA. In contrast with the genera Pirellula , Planctomyces and Gemmata that possess unlinked 16S and 23S rRNA genes, both AAOB have the respective genes linked together by an ISR of approximately 450 bp in length. Phylogenetic analysis of the obtained 23S rRNA-genes confirmed the deep branching of the AAOB within the Planctomycetales and allowed the design of additional specific FISH probes. Remarkably, the ISR of the AAOB also could be successfully detected by FISH via simultaneous application of four monolabelled oligonucleotide probes. Quantitative FISH experiments with cells of Candidatus 'Brocadia anammoxidans' that were inhibited by exposure to oxygen for different time periods demonstrated that the concentration of transcribed ISR reflected the activity of the cells more accurately than the 16S or 23S rRNA concentration. Thus the developed ISR probes might become useful tools for in situ monitoring of the activity of AAOB in their natural environment.  相似文献   

3.
In oxygen-limited marine ecosystems cooperation between marine nitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria is of importance to nitrogen cycling. Strong evidence for cooperation between anammox bacteria and nitrifiers has been provided by environmental studies but little is known about the development of such communities, the effects of environmental parameters and the physiological traits of their constituents. In this study, a marine laboratory model system was developed. Cooperation between marine nitrifiers and anammox bacteria was induced by incremental exposure of a marine anammox community dominated by Scalindua species to oxygen in a bioreactor set-up under high ammonium (40 mM influent) conditions. Changes in the activities of the relevant functional groups (anammox bacteria, aerobic ammonia oxidizers and nitrite oxidizers) were monitored by batch tests. Changes in community composition were followed by Fluorescence in situ Hybridization (FISH) and by amplification and sequencing of 16S rRNA and amoA genes. A co-culture of Scalindua sp., an aerobic ammonia-oxidizing Nitrosomonas-like species, and an aerobic (most likely Nitrospira sp.) nitrite oxidizer was obtained. Aerobic ammonia oxidizers became active immediately upon exposure to oxygen and their numbers increased 60-fold. Crenarchaea closely related to the ammonia-oxidizer Candidatus 'Nitrosopumilus maritimus' were detected in very low numbers and their contribution to nitrification was assumed negligible. Activity of anammox bacteria was not inhibited by the increased oxygen availability. The developed marine model system proved an effective tool to study the interactions between marine anammox bacteria and nitrifiers and their responses to changes in environmentally relevant conditions.  相似文献   

4.
Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of the Nitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genus Nitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates of Nitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospira microcolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources by Nitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, the Nitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO(3)(-) or as CO(2)) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by the Nitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions.  相似文献   

5.
Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems.  相似文献   

6.
The microbial composition of acid streamers (macroscopic biofilms) in acidic, metal-rich waters in two locations (an abandoned copper mine and a chalybeate spa) in north Wales was studied using cultivation-based and biomolecular techniques. Known chemolithotrophic and heterotrophic acidophiles were readily isolated from disrupted streamers, but they accounted for only <1 to 7% of the total microorganisms present. Fluorescent in situ hybridization (FISH) revealed that 80 to 90% of the microbes in both types of streamers were beta-Proteobacteria. Terminal restriction fragment length polymorphism analysis of the streamers suggested that a single bacterial species was dominant in the copper mine streamers, while two distinct bacteria (one of which was identical to the bacterium found in the copper mine streamers) accounted for about 90% of the streamers in the spa water. 16S rRNA gene clone libraries showed that the beta-proteobacterium found in both locations was closely related to a clone detected previously in acid mine drainage in California and that its closest characterized relatives were neutrophilic ammonium oxidizers. Using a modified isolation technique, this bacterium was isolated from the copper mine streamers and shown to be a novel acidophilic autotrophic iron oxidizer. The beta-proteobacterium found only in the spa streamers was closely related to the neutrophilic iron oxidizer Gallionella ferruginea. FISH analysis using oligonucleotide probes that targeted the two beta-proteobacteria confirmed that the biodiversity of the streamers in both locations was very limited. The microbial compositions of the acid streamers found at the two north Wales sites are very different from the microbial compositions of the previously described acid streamers found at Iron Mountain, California, and the Rio Tinto, Spain.  相似文献   

7.
Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compounds was decolorized and degraded under sulfidogenic and methanogenic conditions. Use of molecular methods to describe microbial populations showed that a diverse group of Bacteria and Archaea was involved in this treatment process. FISH enumeration showed that members of the gamma subclass of the class Proteobacteria and bacteria in the Cytophaga-Flexibacter-Bacteroides phylum, together with sulfate-reducing bacteria, were prominent members of a mixed bacterial population. A combination of FISH probing and analysis of 98 archaeal 16S rDNA clone inserts revealed that together with the bacterial population, a methanogenic population dominated by Methanosaeta species and containing species of Methanobacterium and Methanospirillum and a relatively unstudied methanogen, Methanomethylovorans hollandica, contributed to successful anaerobic treatment of the industrial waste. We suggest that sulfate reducers, or more accurately sulfidogenic bacteria, together with M. hollandica contribute considerably to the treatment process through metabolism of dye-associated sulfonate groups and subsequent conversion of sulfur compounds to carbon dioxide and methane.  相似文献   

8.
The bacterial community of an aerobic:anaerobic non-P removing SBR biomass fed a mixture of acetate and glucose was analysed using several 16S rRNA based methods. Populations responsible for anaerobic glucose and acetate assimilation were determined with fluorescent in situ hybridization (FISH) in combination with microautoradiography (FISH/MAR). At 'steady state' this community consisted of alpha-Proteobacteria (26%) and gamma-Proteobacteria (14%), mainly appearing as large cocci in tetrads (i.e. typical 'G-Bacteria'). Large numbers of low G+C bacteria (22%), and high G+C Gram-positive bacteria (29%) seen as small cocci in clusters or in sheets were also detected after FISH. DGGE fingerprinting of PCR amplified 16S rDNA fragments and subsequent cloning and sequencing of several of the major bands led to the identification of some of these populations. They included an organism 98% similar in its 16S rRNA sequence to Micropruina glycogenica, and ca. 76% of the high G+C bacteria responded to a probe MIC 184, designed against it. The rest responded to the KSB 531 probe designed against a high G+C clone sequence, sbr-gs28 reported in other similar systems. FISH analyses showed that both these high G+C populations were almost totally dominated by small clustered cocci. Only ca. 2% of cells were beta-Proteobacteria. None of the alpha- and gamma-Proteobacterial 'G-bacteria' responded to FISH probes designed for the 'G-Bacteria' Amaricoccus spp. or Defluvicoccus vanus. FISH/MAR revealed that not all the alpha-Proteobacterial 'G-Bacteria' could take up acetate or glucose anaerobically. Almost all of the gamma-Proteobacterial 'G-Bacteria' assimilated acetate anaerobically but not glucose, the low G+C clustered cocci only took up glucose, whereas the high G+C bacteria including M. glycogenica and the sbr-gs28 clone assimilated both acetate and glucose. All bacteria other than the low G+C small cocci and a few of the alpha-Proteobacteria accumulated PHB. The low G+C bacteria showing anaerobic glucose assimilation ability were considered responsible for the lactic acid produced anaerobically by this SBR biomass, and M. glycogenica for its high glycogen content.  相似文献   

9.
The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

10.
Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of the Nitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genus Nitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates of Nitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospira microcolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources by Nitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, the Nitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO3 or as CO2) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by the Nitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions.  相似文献   

11.
The microbial composition of acid streamers (macroscopic biofilms) in acidic, metal-rich waters in two locations (an abandoned copper mine and a chalybeate spa) in north Wales was studied using cultivation-based and biomolecular techniques. Known chemolithotrophic and heterotrophic acidophiles were readily isolated from disrupted streamers, but they accounted for only <1 to 7% of the total microorganisms present. Fluorescent in situ hybridization (FISH) revealed that 80 to 90% of the microbes in both types of streamers were β-Proteobacteria. Terminal restriction fragment length polymorphism analysis of the streamers suggested that a single bacterial species was dominant in the copper mine streamers, while two distinct bacteria (one of which was identical to the bacterium found in the copper mine streamers) accounted for about 90% of the streamers in the spa water. 16S rRNA gene clone libraries showed that the β-proteobacterium found in both locations was closely related to a clone detected previously in acid mine drainage in California and that its closest characterized relatives were neutrophilic ammonium oxidizers. Using a modified isolation technique, this bacterium was isolated from the copper mine streamers and shown to be a novel acidophilic autotrophic iron oxidizer. The β-proteobacterium found only in the spa streamers was closely related to the neutrophilic iron oxidizer Gallionella ferruginea. FISH analysis using oligonucleotide probes that targeted the two β-proteobacteria confirmed that the biodiversity of the streamers in both locations was very limited. The microbial compositions of the acid streamers found at the two north Wales sites are very different from the microbial compositions of the previously described acid streamers found at Iron Mountain, California, and the Rio Tinto, Spain.  相似文献   

12.
The anammox bacteria were enriched from reject water of anaerobic digestion of municipal wastewater sludge onto moving bed biofilm reactor (MBBR) system carriers-the ones initially containing no biomass (MBBR1) as well as the ones containing nitrifying biomass (MBBR2). Duration of start-up periods of the both reactors was similar (about 100?days), but stable total nitrogen (TN) removal efficiency occurred earlier in the system containing nitrifying biomass. Anammox TN removal efficiency of 70% was achieved by 180?days in both 20?l volume reactors at moderate temperature of 26.0°C. During the steady state phase of operation of MBBRs the average TN removal efficiencies and maximum TN removal rates in MBBR1 were 80% (1,000?g-N/m(3)/day, achieved by 308?days) and in MBBR2 85% (1,100?g-N/m(3)/day, achieved by 266?days). In both reactors mixed bacterial cultures were detected. Uncultured Planctomycetales bacterium clone P4, Candidatus Nitrospira defluvii and uncultured Nitrospira sp. clone 53 were identified by PCR-DGGE from the system initially containing blank biofilm carriers as well as from the nitrifying biofilm system; from the latter in addition to these also uncultured ammonium oxidizing bacterium clone W1 and Nitrospira sp. clone S1-62 were detected. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. Using previously grown nitrifying biofilm matrix for anammox enrichment has some benefits over starting up the process from zero, such as less time for enrichment and protection against severe inhibitions in case of high substrate loading rates.  相似文献   

13.
By combination of denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA (PCR-DGGE), quinone profiling, and 16S rRNA-targeted fluorescence in situ hybridization (FISH), a polyphosphate-accumulating organism (PAO) responsible for phosphate (P)-removal was identified in activated sludge with high P-removal ability from a laboratory-scale anaerobic/aerobic continuous flow reactor. The DNA fragment from the most dense band on the DGGE gel was closely related to that of 'Candidatus Accumulibacter phosphatis' (beta-Proteobacteria). Quinone profiling also suggested the predominance of beta-Proteobacteria. FISH with a specific oligonucleotide probe designed for the sequence showed that the targeted bacterium was dominant in the activated sludge, and the accumulation and consumption of polyphosphate were observed by dual staining with 4',6-diamidino-2-phenylindole. The bacterium was concluded to be the responsible PAO in the reactor. However, when the P-removal ability per cell slightly decreased, the dominance of the PAO greatly diminished in the activated sludge. Such sludge might be dominated by other types of PAOs.  相似文献   

14.
Ecophysiological interactions between the community members (i.e., nitrifiers and heterotrophic bacteria) in a carbon-limited autotrophic nitrifying biofilm fed only NH(4)(+) as an energy source were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescence in situ hybridization (FISH). Phylogenetic differentiation (identification) of heterotrophic bacteria was performed by 16S rRNA gene sequence analysis, and FISH probes were designed to determine the community structure and the spatial organization (i.e., niche differentiation) in the biofilm. FISH analysis showed that this autotrophic nitrifying biofilm was composed of 50% nitrifying bacteria (ammonia-oxidizing bacteria [AOB] and nitrite-oxidizing bacteria [NOB]) and 50% heterotrophic bacteria, and the distribution was as follows: members of the alpha subclass of the class Proteobacteria (alpha-Proteobacteria), 23%; gamma-Proteobacteria, 13%; green nonsulfur bacteria (GNSB), 9%; Cytophaga-Flavobacterium-Bacteroides (CFB) division, 2%; and unidentified (organisms that could not be hybridized with any probe except EUB338), 3%. These results indicated that a pair of nitrifiers (AOB and NOB) supported a heterotrophic bacterium via production of soluble microbial products (SMP). MAR-FISH revealed that the heterotrophic bacterial community was composed of bacteria that were phylogenetically and metabolically diverse and to some extent metabolically redundant, which ensured the stability of the ecosystem as a biofilm. alpha- and gamma-Proteobacteria dominated the utilization of [(14)C]acetic acid and (14)C-amino acids in this biofilm. Despite their low abundance (ca. 2%) in the biofilm community, members of the CFB cluster accounted for the largest fraction (ca. 64%) of the bacterial community consuming N-acetyl-D-[1-(14)C]glucosamine (NAG). The GNSB accounted for 9% of the (14)C-amino acid-consuming bacteria and 27% of the [(14)C]NAG-consuming bacteria but did not utilize [(14)C]acetic acid. Bacteria classified in the unidentified group accounted for 6% of the total heterotrophic bacteria and could utilize all organic substrates, including NAG. This showed that there was an efficient food web (carbon metabolism) in the autotrophic nitrifying biofilm community, which ensured maximum utilization of SMP produced by nitrifiers and prevented buildup of metabolites or waste materials of nitrifiers to significant levels.  相似文献   

15.
We have constructed a large fosmid library from a mesophilic anaerobic digester and explored its 16S rDNA diversity using a high-density filter DNA–DNA hybridization procedure. We identified a group of 16S rDNA sequences forming a new bacterial lineage named WWE3 (Waste Water of Evry 3). Only one sequence from the public databases shares a sequence identity above 80% with the WWE3 group which hence cannot be affiliated to any known or candidate prokaryotic division. Despite representing a non-negligible fraction (5% of the 16S rDNA sequences) of the bacterial population of this digester, the WWE3 bacteria could not have been retrieved using the conventional 16S rDNA amplification procedure due to their unusual 16S rDNA gene sequence. WWE3 bacteria were detected by polymerase chain reaction (PCR) in various environments (anaerobic digesters, swine lagoon slurries and freshwater biofilms) using newly designed specific PCR primer sets. Fluorescence in situ hybridization (FISH) analysis of sludge samples showed that WWE3 microorganisms are oval-shaped and located deep inside sludge flocs. Detailed phylogenetic analysis showed that WWE3 bacteria form a distinct monophyletic group deeply branching apart from all known bacterial divisions. A new bacterial candidate division status is proposed for this group.  相似文献   

16.
Microbial diversity of biofilms in dental unit water systems   总被引:8,自引:0,他引:8  
We investigated the microbial diversity of biofilms found in dental unit water systems (DUWS) by three methods. The first was microscopic examination by scanning electron microscopy (SEM), acridine orange staining, and fluorescent in situ hybridization (FISH). Most bacteria present in the biofilm were viable. FISH detected the beta and gamma, but not the alpha, subclasses of Proteobacteria: In the second method, 55 cultivated biofilm isolates were identified with the Biolog system, fatty acid analysis, and 16S ribosomal DNA (rDNA) sequencing. Only 16S identified all 55 isolates, which represented 13 genera. The most common organisms, as shown by analyses of 16S rDNA, belonged to the genera Afipia (28%) and Sphingomonas (16%). The third method was a culture-independent direct amplification and sequencing of 165 subclones from community biofilm 16S rDNA. This method revealed 40 genera: the most common ones included Leptospira (20%), Sphingomonas (14%), Bacillus (7%), Escherichia (6%), Geobacter (5%), and Pseudomonas (5%). Some of these organisms may be opportunistic pathogens. Our results have demonstrated that a biofilm in a health care setting may harbor a vast diversity of organisms. The results also reflect the limitations of culture-based techniques to detect and identify bacteria. Although this is the greatest diversity reported in DUWS biofilms, other genera may have been missed. Using a technique based on jackknife subsampling, we projected that a 25-fold increase in the number of subclones sequenced would approximately double the number of genera observed, reflecting the richness and high diversity of microbial communities in these biofilms.  相似文献   

17.
Genomic DNA from nine individual bacteria, isolated from a diclofop-methyl-degrading biofilm consortium, was extracted for genetic characterization. The degradation of diclofop-methyl produces metabolites that are known intermediates or substrates for bacteria that degrade a variety of chlorinated aromatic compounds. Accordingly, oligonucleotide primers were designed from specific catabolic genes for chlorinated organic degradation pathways, and tested by PCR to determine if these genes are involved in diclofop-methyl degradation. DNA homology between the PCR products and the known catabolic genes investigated by Southern hybridization analysis and by sequencing, suggested that novel catabolic genes are functioning in the isolates. Specific fluorescent oligonucleotides were designed for two of the isolates, following 16S rDNA sequencing and identification of each of the isolates. These probes were successfully used for fluorescent in situ hybridization (FISH) studies of the two isolates in the biofilm consortium.  相似文献   

18.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

19.
Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.  相似文献   

20.
In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH(4)(+) wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% +/- 5% of the influent N at the highest surface load of approximately 8.3 g of N m(-2) day(-1), with N(2) as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 +/- 7.6 and 76.5 +/- 6.4 mg of NH(4)(+)-N g of volatile suspended solids [VSS](-1) day(-1), respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS(-1) day(-1)). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH(4)(+) wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought to be jointly responsible for the high autotrophic N removal, occur side by side throughout the biofilm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号