共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract: Bovine chromaffin cells contain within their storage vesicles and release upon cholinergic stimulation a complex mixture of proteins and peptides. We present data suggesting that one of these proteins resembles transforming growth factor (TGF)-β in terms of its biological activity. The assay used to assess the activity of TGF-β is based on cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. The assay is highly specific in detecting TGF-β1, -β2, and -β3 but does not detect several cytokines and growth factors, such as fibroblast growth factor-2, transforming growth factor-α, platelet-derived growth factor-AB, insulin-like growth factor-I, or neurotrophin-3 or -4. Moreover, we show that this assay does not detect a wide range of TGF-β superfamily members (activin A, bone morphogenetic protein-2, -4, -6, and -7, growth/differentiation factor-5, and glial cell line-derived neurotrophic factor). Chromaffin granules contain ∼1 ng of TGF-β/10 mg of protein. The biological activity elicited by the chromaffin granule component can be neutralized by using an antibody against TGF-β1/β2/β3. TGF-β is releasable from cultured chromaffin cells stimulated with the cholinergic agonist carbachol (10−5 M ). These data suggest that TGF-β is stored in chromaffin granules and can be released by exocytosis. 相似文献
3.
Ripamonti U 《Journal of cellular and molecular medicine》2004,8(2):169-180
Bone morphogenetic and osteogenic proteins (BMPs/OPs), members of the transforming growth factor-beta (TGF-beta) superfamily, are soluble mediators of tissue morphogenesis and induce de novo endochondral bone formation in heterotopic extraskeletal sites as a recapitulation of embryonic development. In the primate Papio ursinus, the induction of bone formation has been extended to the TGF-beta isoforms per se. In the primate and in the primate only, the TGF-beta isoforms are initiators of endochondral bone formation by induction and act in a species-, site- and tissue-specific mode with robust endochondral bone induction in heterotopic sites but with limited new bone formation in orthotopic bone defects. The limited inductive capacity orthotopically of TGF-beta isoforms is associated with expression of the inhibitory Smads, Smad6 and Smad7. In primates, bone formation can also be induced using biomimetic crystalline hydroxyapatite matrices with a specific surface geometry and without the exogenous application of osteogenic proteins of the TGF-beta superfamily, even when the biomimetic matrices are implanted heterotopically in the rectus abdominis muscle. The sequence of events that directs new bone formation upon the implantation of highly crystalline biomimetic matrices initiates with vascular invasion, mesenchymal cell migration, attachment and differentiation of osteoblast-like cells attached to the substratum, expression and synthesis of osteogenic proteins of the TGF-beta superfamily resulting in the induction of bone as a secondary response. The above findings in the primate indicate enormous potential for the bioengineering industry. Of particular interest is that biomimetic matrices with intrinsic osteoinductivity would be an affordable option in the local context. 相似文献
4.
5.
Smooth muscle (SM) specific alternate splicing of a number of genes is a late marker of the differentiated vascular smooth muscle cell (VSMC) phenotype and is one of the first differentiation characteristics to be lost during de-differentiation and in disease. An understanding of how this aspect of VSMC phenotype is regulated may provide insights into the earliest events of the atherosclerotic process. TGF-beta1 is a potent regulator of VSMC differentiation and can induce expression of SM-specific contractile proteins in both pluripotent stem cells and de-differentiated VSMCs. The purpose of this study was to test the hypothesis that members of the TGFbeta-superfamily can also effect SM-specific alternative splicing. Firstly, we established that SM-specific splicing of alpha-tropomyosin, vinculin and SM-myosin heavy chain (MHC) increases during rat fetal/neonatal development and is decreased in VSMCs following balloon-induced carotid injury in the rat. Treatment of cultured rat VSMCs with TGFbeta-superfamily members resulted in a significant reduction in the ratio of SM to non-muscle (NM) alpha-tropomyosin, but did not effect SM-specific alternative splicing of vinculin or SM-MHC. Treatment of pluripotent C3H10T1/2 cells with TGF-beta1, which increased SM differentiation marker expression, did not increase SM-specific alpha-tropomyosin splicing. Taken together, these results demonstrate differential regulation of SM-specific alternative splicing and indicate that although TGF-beta1 promotes VSMC differentiation marker expression, TGF-beta1 cannot act as the sole trigger of VSMC differentiation. 相似文献
6.
Enhancement of Metastatic and Invasive Capacity of Gastric Cancer Cells by Transforming Growth Factor-β1 总被引:3,自引:1,他引:3
Transforming growth factor-β (TGF-β),a multifunctional cytokine,exerts contradictory rolesin different kinds of cells.A number of studies have revealed its involvement in the progression of many typesof tumors.To investigate the effect of TGF-β on gastric carcinoma,SGC7901,BGC823 and MKN28 (aTGF-β-resistant cell line) adenocarcinoma clones were used.After pretreatment in serum-free medium withor without 10 ng/ml TGF-β1,their experimental metastatic potential,chemotaxis,and invasive and adhesiveability were measured.Furthermore,zymography for gelatinase was processed.Liver colonies were alsomeasured 4 weeks after inoculation of SGC7901,BGC823 and MKN28 in Balb/c nude mice,and an increasein the number of surface liver metastases was seen in SGC7901 (from 11.0±3.0 to 53.3±3.3) and BGC823(from 9.3±2.5 to 60.0±2.8) groups,whereas there was no difference between MKN28 groups (from 35.2±3.8 to 38.5±2.7).In vitro experiments showed that TGF-β1 increased the adhesion capacity of SGC7901and BGC823 cells to immobilized reconstituted basement membrane/fibronectin matrices and promoted theirpenetration through reconstituted basement membrane barriers.Zymography demonstrated that enhancedinvasive potential was partly due to the increased type Ⅳ collagenolytic (gelatinolytic) activity,but there wasno difference in type Ⅳ collagenolytic activity and other biological behaviors between MKN28 groups.Theseresults suggested that TGF-β1 might modulate the metastatic potential of gastric cancer cells by promotingtheir ability to break down and penetrate basement membrane barriers and their adhesive and motile activities.We speculated that TGF-β1 might act as a progression-enhancing factor in gastric cancer.Therefore blockageof TGF-β or TGF-β signaling might prevent gastric cancer cells from invading and metastasizing. 相似文献
7.
Huojia M Muraoka N Yoshizaki K Fukumoto S Nakashima M Akamine A Nonaka K Ohishi M 《Development, growth & differentiation》2005,47(3):141-152
Several members of the transforming growth factor (TGF)-beta superfamily are expressed in developing teeth from the initiation stage through adulthood. Of those, TGF-beta1 regulates odontoblast differentiation and dentin extracellular matrix synthesis. However, the molecular mechanism of TGF-beta3 in dental pulp cells is not clearly understood. In the present study, beads soaked with human recombinant TGF-beta3 induced ectopic mineralization in dental pulp from fetal mouse tooth germ samples, which increased in a dose-dependent manner. Further, TGF-beta3 promoted mRNA expression, and increased protein levels of osteocalcin (OCN) and type I collagen (COL I) in dental pulp cells. We also observed that the expression of dentin sialophosphoprotein and dentin matrix protein 1 was induced by TGF-beta3 in primary cultured dental pulp cells, however, not in calvaria osteoblasts, whereas OCN, osteopontin and osteonectin expression was increased after treatment with TGF-beta3 in both dental pulp cells and calvaria osteoblasts. Dentin sialoprotein was also partially detected in the vicinity of TGF-beta3 soaked beads in vivo. These results indicate for the first time that TGF-beta3 induces ectopic mineralization through upregulation of OCN and COL I expression in dental pulp cells, and may regulate the differentiation of dental pulp stem cells to odontoblasts. 相似文献
8.
Antagonism of Transforming Growth Factor-Β Signaling Inhibits
Fibrosis-Related Genes 总被引:4,自引:0,他引:4
In the fibrotic process, the transforming growth factor-β1 (TGF-β1)/Smad3 (Sma- and Mad-related protein␣3) signaling plays
a central role. To screen for antagonists of TGF-β1/Smad3 signaling and to investigate their effects on the genes related
to fibrosis, we construct a molecular model with a luciferase reporter gene. Results showed that both SB-431542 [4-(5-benzo[1,3]dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)-benzamide] and small interference RNA (siRNA) against Smad3 could dose-dependently suppress the reporter gene.
More importantly, they both significantly inhibited the expression of plasminogen activator inhibitor-type 1 (PAI-1) and type
I collagenα1 (Col Iα1) genes in rat hepatic stellate cells. Thus, SB-431542 and Smad3/siRNA may be potential therapeutics
for fibrosis. 相似文献
9.
Transforming Growth Factor-β1 Induces Transdifferentiation of Fibroblasts into Myofibroblasts in Hypoxic Pulmonary Vascular Remodeling 总被引:2,自引:2,他引:2
The muscularization of non-muscular pulmonary arterioles is an important pathological feature of hypoxic pulmonary vascular remodeling. However, the origin of the cells involved in this process is still not well understood. The present study was undertaken to test the hypothesis that transforming growth factor-β1 (TGF-β1) can induce transdifferentiation of fibroblasts into myofibroblasts, which might play a key role in the muscularization of non-muscular pulmonary arterioles. It was found that mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. Pulmonary artery remodeling index and fight ventricular hypertrophy became evident after 14 d of hypoxia. The distribution of nonmuscular, partially muscular, and muscular vessels was significantly different after 7 d of hypoxia. Immunocytochemistry results demonstrated that the expression of α-smooth muscle actin was increased in intra-acinar pulmonary arteries with increasing hypoxic time. TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, but showed no obvious changes after 3 or 7 d of hypoxia. In pulmonary tunica adventitia and tunica media, TGF-β1 protein staining was poorly positive in control rats, but was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia. The myofibroblast phenotype was confirmed by electron microscopy, which revealed microfilaments and a well-developed rough endoplasmic reticulum. Taken together, our results suggested that TGF-β1 induces transdifferentiation of fibroblasts into myofibroblasts, which is important in hypoxic pulmonary vascular remodeling. 相似文献
10.
Ina Tesseur Hui Zhang Walter Brecht† Jacob Corn† Jian-Sheng Gong‡ Katsuhiko Yanagisawa‡ Makoto Michikawa‡ Karl Weisgraber† Yadong Huang† Tony Wyss-Coray§ 《Journal of neurochemistry》2009,110(4):1254-1262
Transforming growth factor-β1 (TGF-β1) has central functions in development, tissue maintenance, and repair and has been implicated in major diseases. We discovered that TGF-β1 contains several amphipathic helices and hydrophobic domains similar to apolipoprotein E (apoE), a protein involved in lipoprotein metabolism. Indeed, TGF-β1 associates with lipoproteins isolated from human plasma, cultured liver cells, or astrocytes, and its bioactivity was highest in high-density lipoprotein preparations. Importantly, lipoproteins containing the apoE3 isoform had higher TGF-β levels and bioactivity than those containing apoE4, a major genetic risk factor for atherosclerosis and Alzheimer's disease. Because TGF-β1 can be protective in these diseases an association with apoE3 may be beneficial. Association of TGF-β with different types of lipoproteins may facilitate its diffusion, regulate signaling, and offer additional specificity for this important growth factor. 相似文献
11.
12.
Bone Morphogenetic Protein-2 Promotes Survival and Differentiation of
Striatal GABAergic Neurons in the Absence of Glial Cell Proliferation 总被引:6,自引:0,他引:6
Akira Hattori Masahiro Katayama Shoji Iwasaki Kazuhiro Ishii Masafumi Tsujimoto Michiaki Kohno 《Journal of neurochemistry》1999,72(6):2264-2271
We examined the potential neurotrophic effects of bone morphogenetic protein (BMP)-2 on the survival and differentiation of neurons cultured from the rat developing striatum at embryonic day 16, a period during which the mRNAs for BMP-2 and its receptor subunits (types IA, IB, and II) were detected. BMP-2 exerted potent activity to promote the survival of striatal neurons and increased the number of surviving microtubule-associated protein-2-positive cells by 2.4-fold as compared with the control cultures after 4 days in vitro. Although basic fibroblast growth factor (bFGF) also showed relatively high activity to promote the survival of striatal neurons, transforming growth factor-beta1, -beta2, and -beta3, glial cell line-derived neurotrophic factor, or brain-derived neurotrophic factor promoted their survival weakly. Striatal neurons cultured in the presence of BMP-2 or bFGF possessed extensive neurite outgrowths, the majority of which were GABA-immunoreactive. Inhibition of glial cell proliferation by 5-fluorodeoxyuridine did not affect the capacity of BMP-2 to promote the survival of striatal GABAergic neurons. In contrast, the ability of bFGF to promote the survival of striatal neurons was inhibited significantly by the treatment of cells with 5-fluorodeoxyuridine. All these results suggest that BMP-2 exerts potent neurotrophic effects on the striatal GABAergic neurons in a glial cell-independent manner. 相似文献
13.
目的:构建转化生长因β1(TGF-β1)表达载体,在骨髓间充质干细胞(BMSC)中表达。方法:以小鼠肺组织cDNA为模板,PCR扩增TGF-β1基因,并将其插入pCDH1-MCS1-EF1-copGFP载体质粒,转化感受态大肠杆菌DH5α,抽提质粒,经PCR和测序鉴定后转染BMSC,利用激光共聚焦显微镜和Western印迹对其表达进行检测。结果:经PCR及测序鉴定,构建入载体质粒的基因为TGF-β1基因,pCDH1-TGFβ1-EF1-copGFP重组质粒能在BMSC中表达。结论:构建了pCDH1-TGFβ1-EF1-copGFP重组质粒,且能表达于BMSC,为进一步研究TGF-β1影响间充质干细胞的生理功能奠定了基础。 相似文献
14.
J. M. Gimble C. Morgan K. Kelly X. Wu V. Dandapani C.-S. Wang V. Rosen 《Journal of cellular biochemistry》1995,58(3):393-402
The bone morphogenetic proteins were originally identified based on their ability to induce ectopic bone formation in vivo and have since been identified as members of the transforming growth factor-β gene superfamily. It has been well established that the bone morphogenetic cytokines enhance osteogenic activity in bone marrow stromal cells in vitro. Recent reports have described how bone morphogenetic proteins inhibited myogenic differentiation of bone marrow stromal cells in vitro. In vivo, bone marrow stromal cells differentiate along the related adipogenic pathway with advancing age. The current work reports the inhibitory effects of the bone morphorphogenetic proteins on adipogenesis in a multipotent murine bone marrow stromal cell line, BMS2. When exposed to bone morphogenetic protein-2, the pre-adipocyte BMS2 cells exhibited the expected induction of the osteogenic-related enzyme, alkaline phosphatase. Following induction of the BMS2 cells with adipogenic agonists, adipocyte differentiation was assessed by morphologic, enzymatic, and mRNA markers. Flow cytometric analysis combined with staining by the lipophilic fluorescent dye, Nile red, was used to quantitate the extent of lipid accumulation within the BMS2 cells. By this morphologic criteria, the bone morphogenetic proteins inhibited adipogenesis at concentrations of 50 to 500 ng/ml. This correlated with decreased levels of adipocyte specific enzymes and mRNAs. The BMS2 pre-adipocytes constitutively expressed mRNA encoding bone morphogenetic protein-4 and this was inhibited by adipogenic agonists. Together, these findings demonstrate that bone morphogenetic proteins act as adipogenic antagonists. This supports the hypothesis that adipogenesis and osteogenesis in the bone marrow microenvironment are reciprocally regulated. 相似文献
15.
Transforming Growth Factor-β (TGF-β) plays an essential role in differentiation of dental pulp cells into odontoblasts during reparative dentine formation. However, the mechanism by which TGF-β stimulates dental repair remains rather obscure. Human dental pulp cells were used as an in vitro model in the present work. We showed that TGF-β signaled through mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38, along with Smad pathway. Distinct pathways exerted different time response. SB203580, a specific p38 MAPK inhibitor, reduced phosphorylation of Smad3, while it slightly enhanced phosphorylation of Smad2. Increased phosphorylation of ERK1/2 and p38 confirmed that SB203580 did not block activation of TGF-β receptors. In addition, the inhibition of ERK1/2 activity with MEK1/2 inhibitor U0126 increased TGF-β mediated phosphorylation of Smad3. Our results suggest that p38 affects the phosphorylation of Smad2 and Smad3 differentially during TGF-β signaling in human dental pulp cells and ERK1/2 might be involved in the process. 相似文献
16.
17.
Eun-Sook Y. Lee Marta Sidoryk† Haiyan Jiang† Zhaobao Yin† Michael Aschner† 《Journal of neurochemistry》2009,110(2):530-544
Chronic exposure to manganese (Mn) can cause manganism, a neurodegenerative disorder similar to Parkinson's disease. The toxicity of Mn includes impairment of astrocytic glutamate transporters. 17β-Estradiol (E2) has been shown to be neuroprotective in various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease, and some selective estrogen receptor modulators, including tamoxifen (TX), also possess neuroprotective properties. We have tested our hypothesis that E2 and TX reverse Mn-induced glutamate transporter impairment in astrocytes. The results established that E2 and TX increased glutamate transporter function and reversed Mn-induced glutamate uptake inhibition, primarily via the up-regulation of glutamate/aspartate transporter (GLAST). E2 and TX also increased astrocytic GLAST mRNA levels and attenuated the Mn-induced inhibition of GLAST mRNA expression. In addition, E2 and TX effectively increased the expression of transforming growth factor β1, a potential modulator of the stimulatory effects of E2/TX on glutamate transporter function. This effect was mediated by the activation of MAPK/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. These novel findings suggest, for the first time, that E2 and TX enhance astrocytic glutamate transporter expression via increased transforming growth factor β1 expression. Furthermore, the present study is the first to show that both E2 and TX effectively reverse Mn-induced glutamate transport inhibition by restoring its expression and activity, thus offering a potential therapeutic modality in neurodegenerative disorders characterized by altered glutamate homeostasis. 相似文献
18.
Tocharus J Tsuchiya A Kajikawa M Ueta Y Oka C Kawaichi M 《Development, growth & differentiation》2004,46(3):257-274
The expression of mouse HtrA1 is developmentally regulated and restricted in embryo tissues which depend largely on TGF-beta signaling for their differentiation. We examined whether mouse HtrA3, another HtrA family member very close to HtrA1, shows similar expression patterns. HtrA3 and -1 were expressed mostly in the same embryonic organs but exhibited complementary patterns in various tissues; the lens epithelial cells in day 12.5 embryo expressed HtrA3 whereas the ciliary body and pigment retina expressed HtrA1. In the vertebrae of day 14.5 embryo, HtrA3 was expressed in the tail region, but HtrA1 was predominantly expressed in the thoracic and lumbar regions. Similar to HtrA1, HtrA3 bound to various TGF-beta proteins and inhibited the signaling of BMP-4, -2 and TGF-beta 1. HtrA3 did not inhibit signaling originated from a constitutively active BMP receptor, indicating that the inhibition occurred upstream of the cell surface receptor. HtrA3 also showed proteolytic activities indistinguishable from those of HtrA1 toward beta-casein and some extracellular matrix (ECM) proteoglycans. The protease activity was absolutely required for the TGF-beta signal inhibition activity. All these data suggest that HtrA3 and -1 have the overlapping biological activities but can function in complementary fashion in certain types of tissues. 相似文献
19.
Macromolecules that bind beta-amyloid peptide (Abeta) and neutralize Abeta cytotoxicity offer a promising new approach for treating Alzheimer's disease. When the plasma protein, alpha2-macroglobulin (alpha2M), is treated with methylamine (alpha2M-MA), it undergoes conformational change and acquires Abeta-binding activity. In this study, we demonstrate that a chemically stabilized preparation of human alpha2M conformational intermediates (alpha2M-cis-Pt/MA) binds Abeta with greatly increased affinity, compared with alpha2M-MA. alpha2M-cis-Pt/MA was generated by reacting alpha2M with the protein cross-linking reagent, cis-Pt, followed by methylamine. Increased Abeta-binding to alpha2M-cis-Pt/MA was demonstrated by co-migration of radio-iodinated proteins in non-denaturing PAGE, chemical cross-linking, and co-immunoprecipitation. The apparent K(D) for Abeta-binding to alpha2M-cis-Pt/MA was decreased 10-fold, compared with alpha2M-MA, to 29 nm. Native alpha2M demonstrated negligible Abeta-binding, as anticipated. alpha2M-cis-Pt/MA markedly counteracted Abeta-induced C6 cell apoptosis. Essentially complete inhibition of apoptosis was observed even when the Abeta was present at fourfold molar excess to alpha2M-cis-Pt/MA. Under equivalent conditions, alpha2M-MA inhibited apoptosis by 25 +/- 6%. When Abeta and alpha2M-cis-Pt/MA were added to human plasma in vitro, significant binding was detected. No binding was observed when an equivalent concentration of native alpha2M or alpha2M-MA was added to plasma. We propose that alpha2M-cis-Pt/MA is a novel alternative to Abeta-specific antibodies, for studying the efficacy of Abeta-binding agents in vitro and in vivo. 相似文献
20.
Migraine is an episodic pain disorder whose pathophysiology is related to deficiency of serotonin signaling and abnormal function of the P/Q-type calcium channel, CACNA1A. Because the relationship of the CACNA1A channel to serotonin signaling is unknown and potentially of therapeutic interest we have used genetic analysis of the Caenorhabditis elegans ortholog of this calcium channel, UNC-2, to help identify candidate downstream effectors of the human channel. By genetic dissection of the lethargic mutant phenotype of unc-2, we have established an epistasis pathway showing that UNC-2 function antagonizes a transforming growth factor (TGF)-beta pathway influencing movement rate. This same UNC-2/TGF-beta pathway is required for accumulation of normal serotonin levels and stress-induced modulation of tryptophan hydroxylase (tph) expression in the serotonergic chemosensory ADF neurons, but not the NSM neurons. We also show that transgenic expression of the migraine-associated Ca2+ channel, CACNA1A, in unc-2 animals can functionally substitute for UNC-2 in stress-activated regulation of tph expression. The demonstration that these evolutionarily related channels share a conserved ability to modulate tph expression through their effects on TGF-beta signaling provides the first specific example of how CACNA1A function may influence levels of the critical migraine neurotransmitter serotonin. 相似文献