首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stripe rust, caused by Puccinia striiformis f. sp. tritici , is a serious disease of wheat. The spring wheat cultivar Kariega expresses complete adult plant resistance to stripe rust, whereas Avocet S is susceptible. In former studies, quantitative trait loci (QTL) analysis of doubled haploid lines derived from a Kariega × Avocet S cross revealed two major QTL ( QYr.sgi-7D and QYr.sgi-2B.1 ) and two minor QTL ( QYr.sgi-1A and QYr.sgi-4A.1 ) responsible for the adult resistance of Kariega in the field. Avocet S contains none of these QTL. In the present study, stripe rust development was compared, by means of fluorescence and confocal laser scanning microscopy, in flag leaves of Kariega, Avocet S and six doubled haploid (DH) lines, containing all four, none or one QTL. Depending on the QTL present, the infection types of the DH lines ranged from resistant to fully susceptible. No differences in fungal growth were observed during the first 5 days post inoculation (dpi), whereas the mean length of the fungal colonies started to differ at 6 dpi. Interestingly, MP 51 carrying QYr.sgi-7D responded with lignification to the fungal growth without restricting it, whereas MP 35 containing QYr.sgi-2B.1 did not show lignified host tissue, but fungal growth was restricted. RT PCR experiments with sequences of pathogenesis-related (PR) proteins resulted in a slightly stronger induction of PR 1, 2 and 5, known markers for the hypersensitive reaction, and peroxidases in MP 51, whereas a second band for chitinases was detected in MP 35 only.  相似文献   

2.
Wheat cultivar Xingzi 9104 (XZ) possesses adult plant resistance (APR) to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). In this study, histological and cytological experiments were conducted to elucidate the mechanisms of APR in XZ. The results of leaf inoculation experiments indicated that APR was initiated at the tillering stage, gradually increased as the plant aged and highly expressed after boot stage. The histology and oxidative burst in infected leaves of plants at seedling, tillering and boot stages were examined using light microscopic and histochemical methods. Subcellular changes in the host–pathogen interactions during the seedling and boot stages were analyzed by transmission electron microscopy. The results showed that haustorium formation was retarded in the adult plants and that the differentiation of secondary intercellular hyphae was significantly inhibited, which decreased the development of microcolonies in the adult plants, especially in plants of boot stage. The expression of APR to stipe rust during wheat development was clearly associated with extensive hypersensitive cell death of host cells and localized production of reactive oxygen species, which coincided with the restriction of fungal growth in infection sites in adult plants. At the same time, cell wall-related resistance in adult plants prevented ingression of haustorial mother cells into plant cells. Haustorium encasement was coincident with malformation or death of haustoria. The results provide useful information for further determination of mechanisms of wheat APR to stripe rust. Key message The expression of APR to stipe rust in wheat cultivar Xingzi 9104 (XZ) was clearly associated with extensive hypersensitive cell death of host cells and the localized production of reactive oxygen species.  相似文献   

3.
Following the appearance of stripe rust in South Africa in 1996, efforts have been made to identify new sources of durable resistance. The French cultivar Cappelle-Desprez has long been considered a source of durable, adult plant resistance (APR) to stripe rust. As Cappelle-Desprez contains the seedling resistance genes Yr3a and Yr4a, wheat lines were developed from which Yr3a and Yr4a had been removed, while selecting for Cappelle-Desprez derived APR effective against South African pathotypes of the stripe rust fungus, Puccinia striiformis f. sp. tritici. Line Yr16DH70, adapted to South African wheat growing conditions, was selected and crossed to the stripe rust susceptible cultivar Palmiet to develop a segregating recombinant inbred line mapping population. A major effect QTL, QYr.ufs-2A was identified on the short arm of chromosome 2A derived from Cappelle-Desprez, along with three QTL of smaller effect, QYr.ufs-2D, QYr.ufs-5B and QYr.ufs-6D. QYr.ufs-2D was located within a region on the short arm of chromosome 2D believed to be the location of the stripe rust resistance gene Yr16. An additional minor effect QTL, QYr.ufs-4B, was identified in the cv. Palmiet. An examination of individual RILs carrying single or combinations of each QTL indicated significant resistance effects when QYr.ufs-2A was combined with the three minor QTL from Cappelle-Desprez, and between QYr.ufs-2D and QYr.ufs-5B.  相似文献   

4.
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.  相似文献   

5.

Key message

A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.
  相似文献   

6.
Stripe rust, caused by Puccinia striiformis West. f.sp. tritici, is one of the most damaging diseases of wheat worldwide. Forty genes for stripe rust resistance have been catalogued so far, but the majority of them are not effective against emerging pathotypes. Triticum monococcum and T. boeoticum have excellent levels of resistance to rusts, but so far, no stripe rust resistance gene has been identified or transferred from these species. A set of 121 RILs generated from a cross involving T. monococcum (acc. pau14087) and T. boeoticum (acc. pau5088) was screened for 3 years against a mixture of pathotypes under field conditions. The parental accessions were susceptible to all the prevalent pathotypes at the seedling stage, but resistant at the adult plant stage. Genetic analysis of the RIL population revealed the presence of two genes for stripe rust resistance, with one gene each being contributed by each of the parental lines. A linkage map with 169 SSR and RFLP loci generated from a set of 93 RILs was used for mapping these resistance genes. Based on phenotypic data for 3 years and the pooled data, two QTLs, one each in T. monococcum acc. pau14087 and T. boeoticum acc. pau5088, were detected for resistance in the RIL population. The QTL in T. monococcum mapped on chromosome 2A in a 3.6 cM interval between Xwmc407 and Xwmc170, whereas the QTL from T. boeoticum mapped on 5A in 8.9 cM interval between Xbarc151 and Xcfd12 and these were designated as QYrtm.pau-2A and QYrtb.pau-5A, respectively. Based on field data for 3 years, their R 2 values were 14 and 24%, respectively. T. monococcum acc. pau14087 and three resistant RILs were crossed to hexaploid wheat cvs WL711 and PBW343, using T. durum as a bridging species with the objective of transferring these genes into hexaploid wheat. The B genome of T. durum suppressed resistance in the F1 plants, but with subsequent backcrossing one resistance gene could be transferred from one of the RILs to the hexaploid wheat background. This gene was derived from T. boeoticum acc. pau5088 as indicated by co-introgression of T. boeoticum sequences linked to stripe rust resistance QTL, QYrtb.pau-5A. Homozygous resistant progenies with 40–42 chromosomes have been identified. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of soft red winter wheat in the eastern region of the USA. Pioneer 26R61 has provided effective resistance to stripe rust for 10 years. To elucidate the genetic basis of the resistance, a mapping population of 178 recombinant inbred lines (RILs) was developed using single-seed descent from a cross between Pioneer 26R61 and the susceptible cultivar AGS 2000. A genetic map with 895 markers covering all 21 chromosomes was used for QTL analysis. One major QTL was detected, explaining up to 56.0% of the mean phenotypic variation, flanked by markers Xbarc124 and Xgwm359, and assigned to the distal 22% of the short arm of wheat chromosome 2A. Evidence showed that it was different from Yr17 derived from Ae. ventricosa, the only formally named Yr gene in 2AS, and the QTL was temporarily designated as YrR61. In addition, a minor QTL, QYr.uga-6AS, probably conditioned high-temperature adult plant resistance. The QTL explained 6–7% of the trait variation. Preliminary test of the flanking markers for YrR61, in two cultivars and two promising breeding lines with Pioneer 26R61 in their pedigree, indicated that YrR61 was present in these cultivars and lines, and these markers could therefore be used in marker-assisted selection.  相似文献   

8.
Wheat line CSP44, a selection from an Australian bread wheat cultivar Condor, has shown resistance to stripe rust in India since the last twenty years. Seedlings and adult plants of CSP44 showed susceptible infection types against stripe rust race 46S119 but displayed average terminal disease severity of 2.67 on adult plants against this race as compared to 70.33 of susceptible Indian cultivar, WL711. This suggests the presence of nonhypersensitive adult plant stripe rust resistance in the line CSP44. The evaluation of F1, F2 and F3 generations and F6 SSD families from the cross of CSP44 with susceptible wheat cultivar WL711 for stripe rust severity indicated that the resistance in CSP44 is based on two genes showing additive effect. One of these two genes isYr18 and the second gene is not yet described.  相似文献   

9.

Key message

A major stripe rust resistance QTL on chromosome 4BL was localized to a 4.5-Mb interval using comparative QTL mapping methods and validated in 276 wheat genotypes by haplotype analysis.

Abstract

CYMMIT-derived wheat line P10103 was previously identified to have adult plant resistance (APR) to stripe rust in the greenhouse and field. The conventional approach for QTL mapping in common wheat is laborious. Here, we performed QTL detection of APR using a combination of genome-wide scanning and extreme pool-genotyping. SNP-based genetic maps were constructed using the Wheat55 K SNP array to genotype a recombinant inbred line (RIL) population derived from the cross Mingxian 169?×?P10103. Five stable QTL were detected across multiple environments. After comparing SNP profiles from contrasting, extreme DNA pools of RILs six putative QTL were located to approximate chromosome positions. A major QTL on chromosome 4B was identified in F2:4 contrasting pools from cross Zhengmai 9023?×?P10103. A consensus QTL (LOD?=?26–40, PVE?=?42–55%), named QYr.nwafu-4BL, was defined and localized to a 4.5-Mb interval flanked by SNP markers AX-110963704 and AX-110519862 in chromosome arm 4BL. Based on stripe rust response, marker genotypes, pedigree analysis and mapping data, QYr.nwafu-4BL is likely to be a new APR QTL. The applicability of the SNP-based markers flanking QYr.nwafu-4BL was validated on a diversity panel of 276 wheat lines. The additional minor QTL on chromosomes 4A, 5A, 5B and 6A enhanced the level of resistance conferred by QYr.nwafu-4BL. Marker-assisted pyramiding of QYr.nwafu-4BL and other favorable minor QTL in new wheat cultivars should improve the level of APR to stripe rust.
  相似文献   

10.
Wheat production in Pakistan is seriously constrained due to rust diseases and stripe rust (yellow) caused by Puccinia striiformis f. sp. tritici, which could limit yields. Thus development and cultivation of genetically diverse and resistant varieties is the most sustainable solution to overcome these diseases. The first objective of the present study was to evaluate 100 Pakistan wheat cultivars that have been grown over the past 60 years. These cultivars were inoculated at the seedling stage with two virulent stripe rust isolates from the United States and two from Pakistan. None of the wheat cultivars were resistant to all tested stripe rust isolates, and 16% of cultivars were susceptible to the four isolates at the seedling stage. The data indicated that none of the Pakistan wheat cultivars contained either Yr5 or Yr15 genes that were considered to be effective against most P. striiformis f. sp. tritici isolates from around the world. Several Pakistan wheat cultivars may have gene Yr10, which is effective against isolate PST-127 but ineffective against PST-116. It is also possible that these cultivars may have other previously unidentified genes or gene combinations. The second objective was to evaluate the 100 Pakistan wheat cultivars for stripe rust resistance during natural epidemics in Pakistan and Washington State, USA. It was found that a higher frequency of resistance was present under field conditions compared with greenhouse conditions. Thirty genotypes (30% of germplasms) were found to have a potentially high temperature adult plant (HTAP) resistance. The third objective was to determine the genetic diversity in Pakistan wheat germplasms using molecular markers. This study was based on DNA fingerprinting using resistance gene analog polymorphism (RGAP) marker analysis. The highest polymorphism detected with RGAP primer pairs was 40%, 50% and 57% with a mean polymorphism of 36%. A total of 22 RGAP markers were obtained in this study. RGAP, simple sequence repeat (SSR) and sequence tagged site (STS) markers were used to determine the presence and absence of some important stripe rust resistance genes, such as Yr5, Yr8, Yr9, Yr15 and Yr18. Of the 60 cultivars analyzed, 17% of cultivars showed a RGAP marker band for Yr9 and 12% of cultivars exhibited the Yr18 marker band. No marker band was detected for Yr5, Yr8 and Yr15, indicating a likely absence of these genes in the tested Pakistan wheat cultivars. Cluster analysis based on molecular and stripe rust reaction data is useful in identifying considerable genetic diversity among Pakistan wheat cultivars. The resistant germplasms identified with 22 RGAP markers and from the resistance evaluations should be useful in developing new wheat cultivars with stripe rust resistance.  相似文献   

11.
In order to investigate on inheritance and gene action for resistance to yellow rust, the resistant line C.B227 was crossed with the susceptible variety Avocet. Parents (P1 and P2) and the resulting F1, F2 and F3 generations were planted in a randomised complete block design with two replications in the field. The plants were inoculated with 70E0A+ pathotype of yellow rust in the research station of Gharakhil, Iran, and evaluated for resistance at adult plant stage. Disease severity and infection type of flag leaf were recorded for each single plant and final coefficient of infection was calculated. The results of weighted ANOVA indicated that the difference among the generations was significant (p?<?0.01) for the trait final infection type. Generation mean analysis showed that dominant effect was more important than additive one. The degree of dominance indicated the presence of complete dominance. Additive, dominance and epistasic additive?×?additive [i] effects were important in genetic control of resistance. The results of generation variance analysis were consistent with generation mean analysis.  相似文献   

12.

Key message

We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL.

Abstract

The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.  相似文献   

13.
《Comptes rendus biologies》2019,342(5-6):154-174
Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease of wheat worldwide, including India. Growing resistant cultivars is the most cost-effective and eco-friendly approach to manage the disease. In this study, 70 publically available molecular markers were used to identify the distribution of 35 Yr genes in 68 wheat genotypes. Out of 35 Yr genes, 25 genes amplified the loci associated with Yr genes. Of the 35, 18 were all-stage resistance ASR (All-stage resistance) genes and 7 (Yr16, Yr18, Yr29, Yr30, Yr36, Yr46 & Yr59) were APR (Adult-plant resistance) genes. In the field tests, evaluation for stripe rust was carried out under artificial inoculation of Pst. Fifty-three wheat genotypes were found resistant to yellow rust (ITs 0), accounting for 77.94% of total entries. Coefficients of infection ranged from 0 to 60 among all wheat genotypes. Two genotypes (VL 1099 & VL 3002) were identified with maximum 15 Yr genes followed by 14 genes in VL 3010 and HI8759, respectively. Maximum number of all-stage resistance genes were identified in RKD 292 (11) followed by ten genes in DBW 216, WH 1184 and VL 3002. Maximum number of adult-plant resistance gene was identified in VL 3009 (6), HI 8759 (5) and Lassik (4) respectively. Genes Yr26 (69.2%), Yr2 (69.1%), Yr64 (61.7%), Yr24 (58.9%), Yr7 (52.9%), Yr10 (50%) and Yr 48 (48.5%) showed high frequency among selected wheat genotypes, while Yr9 (2.94%), Yr36 (2.94%), Yr60 (1.47%) and Yr32 (8.8%) were least frequent in wheat genotypes. In future breeding programs, race specific genes and non-race specific genes should be utilised to pyramid with other effective genes to develop improved wheat cultivars with high-level and durable resistance to stripe rust. Proper deployment of Yr genes and utilizing the positive interactions will be helpful for resistance breeding in wheat.  相似文献   

14.
DNA分子标记在小麦抗条锈性遗传研究中的应用   总被引:4,自引:1,他引:4  
综述了近年来DNA分子标记在小麦抗条锈性遗传研究中的应用现状和潜力。内容涉及DNA分子标记在基因标记,基因克隆,遗传图谱构建和辅助选择育种等方面的应用,并列举了代表性实例,展望了DNA分子标记技术在小麦抗条锈病研究上的前景。  相似文献   

15.
Z X Shi  X M Chen  R F Line  H Leung  C R Wellings 《Génome》2001,44(4):509-516
The Yr9 gene, which confers resistance to stripe rust caused by Puccinia striiformis f.sp. tritici (P. s. tritici) and originated from rye, is present in many wheat cultivars. To develop molecular markers for Yr9, a Yr9 near-isogenic line, near-isogenic lines with nine other Yr genes, and the recurrent wheat parent 'Avocet Susceptible' were evaluated for resistance in the seedling stage to North American P s. tritici races under controlled temperature in the greenhouse. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for Yr9. The BC7:F, and BC7:F3 progeny, which were developed by backcrossing the Yr9 donor wheat cultivar Clement with 'Avocet Susceptible', were evaluated for resistance to stripe rust races. Genomic DNA was extracted from 203 BC7:F2 plants and used for cosegregation analysis. Of 16 RGAP markers confirmed by cosegregation analysis, 4 were coincident with Yr9 and 12 were closely linked to Yr9 with a genetic distance ranging from 1 to 18 cM. Analyses of nullitetrasomic 'Chinese Spring' lines with the codominant RGAP marker Xwgp13 confirmed that the markers and Yr9 were located on chromosome 1B. Six wheat cultivars reported to have 1B/1R wheat-rye translocations and, presumably, Yr9, and two rye cultivars were inoculated with four races of P. s. tritici and tested with 9 of the 16 RGAP markers. Results of these tests indicate that 'Clement', 'Aurora', 'Lovrin 10', 'Lovrin 13', and 'Riebesel 47/51' have Yr9 and that 'Weique' does not have Yr9. The genetic information and molecular markers obtained from this study should be useful in cloning Yr9, in identifying germplasm that may have Yr9, and in using marker-assisted selection for combining Yr9 with other stripe rust resistance genes.  相似文献   

16.
17.
Kang H  Wang Y  Fedak G  Cao W  Zhang H  Fan X  Sha L  Xu L  Zheng Y  Zhou Y 《PloS one》2011,6(7):e21802
Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat-P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding.  相似文献   

18.
Stripe rust (Puccinia striiformis f. sp. tritici) is one of the major devastating disease which causes large reduction in wheat yield. T. monococcum is an attractive diploid species for gene discovery in wheat with smaller genome size of 5700 Mb compared to 17,300 Mb of bread wheat. An adult plant stripe rust resistance QTL QYrtm.pau-2A was mapped on chromosome 2A flanked by two SSR markers Xwmc170 and Xwmc407. In the present study, two gene based markers Pau_Ta2AL_Gene45 and Pau_Ta2AL_Gene54 developed from 2A specific ESTs were found to map close to QYrtmpau-2A to narrow down the region for candidate gene identification. Utilizing sequence information of these two markers, four BAC clones were identified from the Minimum Tiling Path of 2AL assembly and were sequenced. SSR markers were designed from these BAC sequences and mapped to chromosome 2A. A 50 Mb region of wheat chromomse 2A was identified to harbor stripe rust resistance gene of T. monococcum. Gene based markers identified in the present investigation can be used for marker assisted introgression of QYrtm.pau-2A from T. monococcum to cultivated wheat.  相似文献   

19.
Quantitative trait loci of stripe rust resistance in wheat   总被引:1,自引:0,他引:1  

Key message

Over 140 QTLs for resistance to stripe rust in wheat have been published and through mapping flanking markers on consensus maps, 49 chromosomal regions are identified.

Abstract

Over thirty publications during the last 10 years have identified more than 140 QTLs for stripe rust resistance in wheat. It is likely that many of these QTLs are identical genes that have been spread through plant breeding into diverse backgrounds through phenotypic selection under stripe rust epidemics. Allelism testing can be used to differentiate genes in similar locations but in different genetic backgrounds; however, this is problematic for QTL studies where multiple loci segregate from any one parent. This review utilizes consensus maps to illustrate important genomic regions that have had effects against stripe rust in wheat, and although this methodology cannot distinguish alleles from closely linked genes, it does highlight the extent of genetic diversity for this trait and identifies the most valuable loci and the parents possessing them for utilization in breeding programs. With the advent of cheaper, high throughput genotyping technologies, it is envisioned that there will be many more publications in the near future describing ever more QTLs. This review sets the scene for the coming influx of data and will quickly enable researchers to identify new loci in their given populations.  相似文献   

20.
Lesion mimics (LM) that resemble plant disease symptoms in the absence of plant pathogens may confer enhanced plant disease resistance to a wide range of pathogens. Wheat line Ning7840 has adult plant resistance (APR) to leaf rust (Puccinia triticina) and shows LM symptoms at heading. A recessive gene (lm) was found to be responsible for LM in Ning7840 and located near the proximal region of chromosome 1BL using a population of 179 recombinant inbred lines (RIL) derived from the cross Ning7840/Chokwang. Genomic in situ hybridization showed that Ning7840 carries the short arm of 1R chromosome from rye (Secale cereale L.), on which the race-specific gene Lr26 resides. The RILs were infected with the isolate PRTUS 55, an isolate virulent to Lr26, at anthesis in two greenhouse experiments. The result showed that the lines with LM phenotype had a significantly higher rust resistance than the non-LM lines. Composite interval mapping consistently detected a QTL, Qlr.pser.1BL, for APR on chromosome 1BL. Qlr.pser.1BL peaked at lm and explained up to 60.8% of phenotypic variation for leaf rust resistance in two greenhouse experiments, therefore, lm from Ning7840 may have pleiotropic effects on APR to leaf rust. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号