首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3'(2')-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP) was used as a photoaffinity label of the ATP binding site of unphosphorylated chicken gizzard myosin. Specific photolabeling of the active site of 6 S myosin was assured by forming a stable myosin.Co(II)Bz2ADP.orthovanadate complex (termed trapping) prior to irradiation. Co2+ was used in place of Mg2+ to prevent the known photoreaction of vanadate with myosin which destabilizes the trapped complex. [3H] Bz2ADP.Pi was also stably trapped on gizzard myosin by forming the 10 S folded conformation of the protein in the presence of [3H]Bz2ATP and Mg2+. Irradiation of 6 S myosin containing orthovanadate trapped [3H] Bz2ADP or 10 S trapped [3H]Bz2ADP.Pi gave 32 and 30% covalent incorporation, respectively. The 50-kDa and precursor 68-kDa tryptic peptides of the subfragment-1 heavy chain derived from both forms of myosin were found to contain essentially all of the covalently attached [3H]Bz2ADP. Parallel experiments with untrapped [3H]Bz2ADP showed extensive nonspecific labeling of all of the major tryptic peptides and the light chains. Eight labeled peptides, isolated from 6 and 10 S photolabeled myosin, contained the sequence G319-H-V-P-I-X-A-Q326, where X corresponds to labeled proline 324. [14C]Bz2ADP was previously shown to label serine 324 in skeletal subfragment-1 (Mahmood, R., Elzinga, M., and Yount, R. G. (1989) Biochemistry 28, 3989-3995), which corresponds to alanine 325 in the gizzard sequence. Thus, this region of the 50-kDa tryptic fragment, near the nucleotide binding site, in both skeletal and smooth muscle myosins, must fold in essentially the same manner.  相似文献   

2.
The Mg2+-dependent ATPase (adenosine 5'-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' - 1 E.ATP k' + 2 in equilibrium k' - 2 E.ADP.Pi k' + 3 in equilibrium k' - 3 E.ADP + Pi k' + 4 in equilibrium k' - 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 X 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 X 10(4) M-1.S-1 and 7.4 X 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.  相似文献   

3.
The fluorescent reagent 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD-F) reacted specifically with 1.9 lysyl residues/mol of the myosin subfragment-1 (S-1) ATPase. When 1.9 lysyl residues were modified, the K+- and Ca2+-ATPase activities were almost completely inhibited, whereas the Mg2+-ATPase activity was increased to 180% of original activity. The actin-activated Mg2+-ATPase activity was decreased to 30% of original activity by this modification. However, affinity of S-1 for actin in the presence of ATP was unchanged. The NBD fluorescence of the modified S-1 was quenched on addition of ATP, suggesting that ATP induced conformational changes around the NBD groups attached to S-1. Tryptic digestion of the modified S-1 revealed that the NBD groups are attached mainly to the 50-kDa peptide of S-1, more precisely the 45-kDa peptide. These results confirm the recent reports that the 50-kDa peptide of S-1 is involved in the myosin ATPase reaction (K?rner, M., Thiem, N. V., Cardinaud, R., and Lacombe, G. (1983) Biochemistry 22, 5843-5847; Hiratsuka, T. (1986) Biochemistry 25, in press).  相似文献   

4.
The protective effect of ATP, ADP and GTP against the inactivation of Ca2+ + Mg2+ -dependent ATPase by the thiol reagent NBD-chloride is used to calculate the apparent dissociation constants (K'D) of nucleotide enzyme complexes on the basis of a simple kinetic model. The K'D-values of the complexes with Mg-ATP (80 micrometer) and Mg-GTP (500 micrometer) are found to be rather close to their Km-values in the high concentration range supporting maximum activity. The requirement of the occupancy of the low affinity site by Mg ATP for a high rate of the Ca2+ transport system is explained in terms of the flip-flop mechanism established earlier for the analogous Na+ + K+-transporting ATPase system.  相似文献   

5.
It was shown that the highly purified monoaldehyde derivative of ADP obtained by partial reduction of the dialdehyde derivative of ADP causes strong irreversible inhibition of the Ca-ATPase activity of myosin subfragment I, the inhibiting effect being of the affinity modification type. The addition to the reaction medium of Mg2+ (but not Ca2+) during the subfragment I interaction with the inhibitor fully prevents the inhibiting effect at all substrates used (Ca-, Mg- or K, EDTA-ATPases). Contrariwise, the subfragment I modified in the absence of Mg2+ exhibits the same degree of inhibition for all the three types of the ATPase activity. An unexpected result that was previously unobserved for other affinity modifiers of myosin ATPase is the maintenance of activity in 50% of active centers, when "two-head" forms of the enzyme (the myosin proper and heavy meromyosin, HMM) are modified. Noteworthy that the affinity modification reaction is characterized by the same values of inhibition constants as in the case of myosin subfragment I (Ki = 3.3-3.5 X 10(-4) M; ki = 0.03-0.04 min-1). This finding provides additional evidence in favour of functional asymmetry of myosin heads in the myosin molecule which seems to be due to the screening of the active center of one head by the other one.  相似文献   

6.
Nucleotide-binding sites of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum were labeled by ultraviolet irradiation in the presence of [alpha-32P]ATP. A high-affinity site, located on subunit I (98 kDa), was identified as catalytic by the following criteria: ATP bound to subunit I was hydrolyzed and the cross-linked nucleotide was ADP; the specificity for ATP or ADP compared to that of other nucleotides was high; the tightly bound radionucleotide was exchangeable in the presence of excess unlabeled ATP and Mg2+; photolabeling of this site and enzyme inhibition due to tightly bound ADP were both dependent on the presence of Mg2+ and showed identical Kd values; treatment that restored the activity of the ADP-inhibited enzyme also led to the release of the tightly bound nucleotide from subunit I. In addition, a non-catalytic nucleotide-binding site was found, located on subunit II (71 kDa). This site did not hydrolyze ATP, its occupation was Mg2+ independent and the affinity for ATP and the nucleotide specificity were much lower than that of subunit I. We suspect that this site is nonspecific. These results indicate that H. saccharovorum ATPase is different from F1-ATPases which contain the catalytic site on the second largest subunit, but may be similar to other archaebacterial and vacuolar ATPases.  相似文献   

7.
1. The effects of Ca(2+) and Mg(2+) on the enzymic activity of myosin were studied with myosin preparations treated by the ion-exchange resin Chelex-100. A reaction mixture containing 0.05m-potassium chloride was chosen in which the effects of univalent ions such as K(+), Na(+) and Cl(-) do not change significantly with small variations in their concentrations. 2. The relationship between the rate of hydrolysis of ATP or ITP and the concentration of Ca(2+) suggests that a relatively weak binding of Ca(2+) either to myosin or to the substrate nucleotide is responsible for the activation of the enzymic activity. According to the experiments with an ultrafiltration technique, the binding of Ca(2+) to myosin proceeds in at least two steps, the first occurring at one site on every 500000 atomic mass units of myosin with an apparent association constant, K(app.), 1.3x10(6)m(-1), and the second seeming to be so weak that its binding parameters cannot be determined by the method used. The first type of Ca(2+) binding is not observable with N-ethylmaleimide-modified myosin, yet this modified myosin shows activation by Ca(2+) of its adenosine triphosphatase and inosine triphosphatase. 3. The inhibition by Mg(2+) can be related to a binding reaction of Mg(2+) with myosin having K(app.) approximately 10(6)m(-1). Mg(2+) replaces the Ca(2+) bound tightly to myosin. The K(app.) for Mg(2+)-myosin binding calculated by assuming a competition between Ca(2+) and Mg(2+) for the same site is 2.1x10(5)-3.0x10(5)m(-1). When myosin is modified with a thiol reagent (p-mercuribenzoate) at a certain ratio to myosin, the inhibition by Mg(2+) becomes unobservable. 4. The behaviour of the hydrolytic activity of myosin on ATP or ITP in the presence of both Ca(2+) and Mg(2+) is consistent with the explanation that the inhibition by Mg(2+) is due to the tight binding of Mg(2+) to myosin, whereas the activation by Ca(2+) is caused either by a weak binding of Ca(2+) to myosin or by CaATP(2-) or by both.  相似文献   

8.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

9.
A comparison of the transient kinetics of cardiac ventricular normal and hyperthyroid modified myosin subfragment-1 reveals substantial similarities between the two proteins. The nucleotide-binding kinetics are nonexponential for both proteins, but the large tryptophan fluorescence changes, 34% for ATP binding and 12% for ADP binding which are comparable to those of rabbit skeletal myosin subfragment-1, permit the kinetic data to be resolved into a sum of two exponentials. Both the fast and slow forms of the proteins reach limiting rate constants at high nucleotide concentration. The fast forms of normal and thyrotoxic cardiac subfragment-1 are kinetically identical for nucleotide binding at 20 degrees C and pH 7 and the slow forms differ by less than a factor of 2. The kinetic data for ADP release and the single turnover of ATP could neither be fit by a single exponential nor resolved into two components, which indicates a difference in the rate constants by a factor of 2 or less. The largest difference found was in the steady state turnover of ATP for which thyrotoxic subfragment-1 had a 2.5 times faster turnover as compared to normal subfragment-1. The fractions of fast and slow forms of the two proteins are dependent on the nucleotide concentration and the fractions as well as the rate constants are a function of the protein concentration. This is consistent with the kinetic heterogeneity of cardiac myosin subfragment-1 resulting from aggregation. The differences in the rate constant for the steady state turnover of ATP and in aggregation properties between normal and hyperthyroid cardiac subfragment-1 are consistent with the induction of a myosin isozyme by thyroxine treatment. Moreover, the increase in the steady state turnover of ATP is consistent with the increase in contractility of the muscle in the hyperthyroid state.  相似文献   

10.
The fluorescent reagent 9-anthroylnitrile (ANN) reacted preferentially with serine among various amino acids tested. When the myosin subfragment-1 (S-1) was incubated with ANN, the 9-anthroyl (AN) group was covalently incorporated into the S-1 heavy chain. The incorporation of the AN group was enhanced by the presence of ATP and ADP. In the presence of ATP, 0.98 mol of the AN group was maximally incorporated into S-1. The resulting S-1 derivative exhibited four absorption maxima in the range of 300-400 nm and fluoresced strongly with an emission maximum at 462 nm upon excitation at 390 nm. The spectral properties were similar to those of the AN-derivatives of serine and polyserine. When 0.98 mol of the AN group was incorporated into S-1, the K+- and Ca2+-ATPase activities decreased to 30%, while the Mg2+-ATPase activity increased to 220% of the original value. Tryptic digestion of the labeled S-1 revealed that the AN group was attached only to the NH2-terminal 23-kDa tryptic peptide of the S-1 heavy chain. Neither the 20-nor the 50-kDa peptide was labeled with ANN. The results suggest that a serine residue, which becomes more reactive in the presence of the nucleotide, is located in the 23-kDa tryptic peptide of S-1.  相似文献   

11.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ +K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5-di(adenosine-5') pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5=116 microM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

12.
The effects of the divalent cations Mg2+, Mn2+ and Ca2+ on the Brownian rotational motion of fluorescently labeled myosin, heavy meromyosin and myosin subfragment-1 were measured by the method of time-resolved fluorescence depolarization. When Mg2+ was added to solutions of myosin or heavy meromyosin and EDTA, their rotational mobility increased. Ca2+ had no effect. Mn2+ increased the mobility of heavy meromyosin but decreased that of myosin. None of these divalent cations effected the mobility of subfragment-1. The binding of heavy meromyosin to actin was affected very little by Mg2+ or EDTA over a wide range of conditions. Divalent cations appear to change the swivel about which the heads of myosin rotate, presumably by binding to light chain 2 (also called DTNB light chain). However, the heads are still able to bind actin in nearly the same way whether Mg2+ is present or not. The concentration of free Mg2+ for the mid-point of the change in heavy meromyosin mobility is in good agreement with that for EDTA activation of ATPase activity. This suggests that EDTA activation is due to removal of Mg2+ bound to myosin itself.  相似文献   

13.
The effects of ATP, ADP, and inorganic phosphate (Pi) on the gating of native sheep cardiac ryanodine receptor channels incorporated into planar phospholipid bilayers were investigated. We demonstrate that ATP and ADP can activate the channel by Ca2+-dependent and Ca2+-independent mechanisms. ATP and ADP appear to compete for the same site/s on the cardiac ryanodine receptor, and in the presence of cytosolic Ca2+ both agents tend to inactivate the channel at supramaximal concentrations. Our results reveal that ATP not only has a greater affinity for the adenine nucleotide site/s than ADP, but also has a greater efficacy. The EC50 value for channel activation is approximately 0.2 mM for ATP compared to 1.2 mM for ADP. Most interesting is the fact that, even in the presence of cytosolic Ca2+, ADP cannot activate the channel much above an open probability (Po) of 0.5, and therefore acts as a partial agonist at the adenine nucleotide binding site on the channel. We demonstrate that Pi also increases Po in a concentration and Ca2+-dependent manner, but unlike ATP and ADP, has no effect in the absence of activating cytosolic [Ca2+]. We demonstrate that Pi does not interact with the adenine nucleotide site/s but binds to a distinct domain on the channel to produce an increase in Po.  相似文献   

14.
By means of spin labeled analogs of ATP we have shown that conformational changes in myosin molecule induced by variation of temperature take place in the region of the active centre. In case of Mg-ATP and unmodified myosin conformation of the active centre changes monotonously with the change in temperature but after the modification of S1 thiol groups by N-ethylmaleimide on the temperature dependence curve of rotational mobility of the spin label a discontinuous is observed at 14-16 degrees C. It is also observed in case of K+-EDTA-ATP, or Ca2+-ATP and unmodified myosin. It is shown that the chemical analogs of Mg2+-paramagnetic ion Mn2+ are directly connected with the myosin active centre in the presence of ATP(ADP), i. e. a triple complex enzyme-bivalent cation-substrate is formed.  相似文献   

15.
The glycosidic bond torsion angles and the conformations of the ribose of Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P (magnesium adenosine 5'-[beta, gamma-imido]triphosphate) bound to Ca2+ATPase, both native and modified with fluorescein isothiocyanate (FITC), in intact sarcoplasmic reticulum have been determined by the measurement of proton-proton transferred nuclear Overhauser enhancements by 1H-NMR spectroscopy. This method shows clearly the existence of a low-affinity ATP binding site after modification of the high-affinity site with FITC. For all three nucleotides bound to both the high-affinity (catalytic) site and the low-affinity site, we find that the conformation about the glycosidic bond is anti, the conformation of the ribose 3'-endo of the N type and the conformation about the ribose C4'-C5' bond either gauche-trans or trans-gauche. The values for the glycosidic bond torsion angles chi (O4'-C1'-N9-C4) for Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P bound to the low-affinity site of FITC-modified Ca2+ATPase are approximately equal to 270 degrees, approximately equal to 260 degrees and approximately equal to 240 degrees respectively. In the case of the nucleotides bound to the high-affinity (catalytic) site of native Ca2+ATPase, chi lies in the range 240-280 degrees.  相似文献   

16.
Comprehensive binding studies using direct and indirect methods yield stoichiometry and affinities for the binding of Mg X ADP and uncomplexed ADP to the active site of myosin subfragment-1. Additionally, the binding parameters for Mg2+ in the ternary complex protein X Mg X ADP are presented for the first time. The indirect method makes use of reactivity changes of the critical thiol-1 and thiol-2 groups, which occur upon the binding of the ligand at the active site. The affinity constants derived by this method are corroborated by two independent direct methods, equilibrium dialysis and centrifugation transport. For Mg2+, ADP and Mg X ADP just one mole of ligand binds/mole subfragment-1. The affinity of Mg X ADP at low ionic strength is 2.1 X 10(6) M-1 and only five-times lower in the absence of Mg2+. In the ternary complex Mg2+ has a low affinity of 4.1 X 10(4) M-1. At high ionic strength the uncomplexed ADP binds with a 43-times-lower affinity than Mg X ADP, whose affinity is 6.9 X 10(5) M-1. In this case Mg2+ interacts in the ternary complex with the higher affinity of 3.2 X 10(5) M-1, implying that at high salt concentration it plays a more prominent role in anchoring ADP at the active site.  相似文献   

17.
The kinetics of the Mg2+-dependent ATPase (adenosine triphosphatase) activity of bovine cardiac myosin and its papain subfragment-1 were studied by using steady-state and pre-steady-state techniques, and results were compared with published values for the corresponding processes in the ATPase mechanism of rabbit skeletal-muscle myosin subfragment-1. The catalytic-centreactivity for cardiac subfragment-1 is 0.019s-1, which is less than one-third of that determined for the rabbit protein. The ATP-induced isomerization process, measured from enhancement of protein fluorescence on substrate binding, is similarly decreased in rate, as is also the isomerization process associated with ADP release. However, the equilibrium constant for ATP cleavage, measured by quenched-flow by using [gamma-32P]ATP, shows little difference in the two species. Other experiments were carried out to investigate the rate of association of actin with subfragment-1 by light-scattering changes and also the rate of dissociation of the complex by ATP. The dissociation rate increases with increasing substrate concentration, to a maximum at high ATP concentrations, with a rate constant of about 2000s-1. It appears that isomerization processes which may involve conformational changes have substantially lower rate constants for the cardiac proteins, whereas equilibrium constants for substrate binding and cleavage are not significantly different. These differences may be related to the functional properties of these myosins in their different muscle types. Kinetic heterogeneity has been detected in both steady-state and transient processes, and this is discussed in relation to the apparent chemical homogeneity of cardiac myosin.  相似文献   

18.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Isolation and characterization of covalently cross-linked actin dimer   总被引:5,自引:0,他引:5  
Covalently cross-linked actin dimer was isolated from rabbit skeletal muscle F-actin reacted with phenylenebismaleimide (Knight, P., and Offer, G. (1978) Biochem. J. 175, 1023-1032). The UV spectrum of the purified cross-linked actin dimer, in a nonpolymerizing buffer, was very similar to that of native F-actin and not to the spectrum of G-actin. Cross-linked actin dimer polymerized to filaments that were indistinguishable in the electron microscope from F-actin made from native G-actin and that were similar to native F-actin in their ability to activate the Mg2+-ATPase of myosin subfragment-1. The critical concentrations of polymerization of cross-linked actin dimer in 0.5 mM and 2.0 mM MgCl2, 2 to 4 microM, and 1 to 2 microM, respectively, were similar to the values for native G-actin. Cross-linked actin dimer contained 2 mol of bound nucleotide/mol of dimer. One bound nucleotide exchanged with ATP in solution with a t 1/2 of 55 min and with ADP with a t 1/2 of 5 h. The second bound nucleotide exchanged much more slowly. The more rapidly exchangeable site contained 10 to 15% bound ADP.Pi and 85 to 90% bound ATP while the second site contained much less, if any, bound ADP.Pi. Cross-linked actin dimer had an ATPase activity in 0.5 mM MgCl2 that was 7 times greater than the ATPase activity of native G-actin and that was also stimulated by cytochalasin D. These data are discussed in relation to the possible role of ATP in actin polymerization and function with the speculation that the cross-linked actin dimer may serve simultaneously as a useful model for each of the two different ends of native F-actin.  相似文献   

20.
To examine the possibility of cooperative interactions between the two myosin heads in muscle contraction, Ca2+-activated force development, K+-EDTA-and Mg2+-ATPase activities, muscle fiber stiffness, and the velocity of unloaded shortening were measured on partially p-phenylenedimaleimide (p-PDM)-treated glycerinated muscle fibers, which contained a mixture of myosin molecules with zero, one, and two of their heads inactivated, and the relationships among these values (expressed relative to the control values) were studied. It was found that the magnitude of the Ca2+-activated isometric force development was proportional to the square of both K+-EDTA- and Mg2+-ATPase activities and also to the square of muscle fiber stiffness. If the two myosin heads in the glycerinated fibers are assumed to react independently with p-PDM, the above results strongly suggest that each myosin molecule in the thick filaments can generate force only when its two heads do not react with p-PDM, muscle fiber stiffness is determined by the total number of native heads, and there is no cooperative interaction between the two myosin heads in catalyzing ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号