首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4)–methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9–methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9–methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.  相似文献   

9.
A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4)–methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9–methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9–methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.  相似文献   

10.
11.
12.
丝裂原和应激激活的蛋白激酶(MSK)是一类核内丝/苏氨酸蛋白激酶,参与丝裂原激活蛋白激酶(MAPK)信号通路介导的下游基因转录调控和表观遗传学调控.首先,MSK是MAPK通路的下游媒介分子.在丝裂原或应激刺激下,p38或ERK激酶通过级联磷酸化激活MSK蛋白.然后,活化的MSK介导转录因子磷酸化活化和组蛋白H3的10位丝氨酸磷酸化.MSK介导的组蛋白H3磷酸化,可引发组蛋白乙酰化和甲基化修饰的动态变化,相互协同或拮抗,开放染色质结构,利于诱导型基因的表达.除组蛋白H3外,MSK直接磷酸化的下游底物还包括CREB、NF-κB等转录因子以及多个非转录相关蛋白.因此,MSK能在多层次调控基因表达和细胞功能,广泛参与肿瘤转化、炎症反应、神经突触可塑性以及心肌肥大等生物学事件.本文将简要介绍MSK蛋白的研究进展,探讨其在转录调控、表观遗传学修饰等生物学事件中的作用.  相似文献   

13.
14.
Histone acetylation has been shown to affect chromatin structure and gene expression. The mitogen-activated protein (MAP) kinase pathway is activated by a number of cytokines and plays critical roles in hematopoietic cell survival, proliferation, and differentiation. We focused on the part of the MAP kinase cascade and granulocyte colony-stimulating factor (G-CSF)in histone acetylation at one of the critical myeloid differentiation-associated genes, myeloperoxidase (MPO). G-CSF caused rapid acetylation of histone H3 and H4 at the promoter of MPO as revealed by chromatin immunoprecipitation. In addition, CBP and p300 were recruited to the promoter in response to G-CSF. Furthermore, we showed that rapid histone acetylation induced by G-CSF is MAP kinase-dependent. These results illustrate how myeloid-differentiating signals via G-CSF may be coupled with histone acetylation during the process of gene expression.  相似文献   

15.
The induction of immediate-early (IE) genes, including proto-oncogenes c-fos and c-jun, correlates well with a nucleosomal response, the phosphorylation of histone H3 and HMG-14 mediated via extracellular signal regulated kinase or p38 MAP kinase cascades. Phosphorylation is targeted to a minute fraction of histone H3, which is also especially susceptible to hyperacetylation. Here, we provide direct evidence that phosphorylation and acetylation of histone H3 occur on the same histone H3 tail on nucleosomes associated with active IE gene chromatin. Chromatin immunoprecipitation (ChIP) assays were performed using antibodies that specifically recognize the doubly-modified phosphoacetylated form of histone H3. Analysis of the associated DNA shows that histone H3 on c-fos- and c-jun-associated nucleosomes becomes doubly-modified, the same H3 tails becoming both phosphorylated and acetylated, only upon gene activation. This study reveals potential complications of occlusion when using site-specific antibodies against modified histones, and shows also that phosphorylated H3 is more sensitive to trichostatin A (TSA)-induced hyperacetylation than non-phosphorylated H3. Because MAP kinase-mediated gene induction is implicated in controlling diverse biological processes, histone H3 phosphoacetylation is likely to be of widespread significance.  相似文献   

16.
Small heat shock proteins (sHsps) exist in dynamic oligomeric complexes and display diverse biological functions ranging from chaperone properties to modulator of apoptosis. So far, the role of stress-dependent phosphorylation of mammalian sHsps for its structure and function has been analyzed by using various phosphorylation site mutants overexpressed in different cell types as well as by non-exclusive inhibitors of the p38 MAPK cascade. Here we investigate the role of phosphorylation of endogenous sHsp in a genetic model lacking the major Hsp25 kinase, the MAP kinase-activated protein kinase MK2. We demonstrate that in MK2-deficient fibroblasts, where no stress-dependent phosphorylation of Hsp25 at Ser86 and no in vitro binding to 14-3-3 was detectable, stress-dependent disaggregation of endogenous Hsp25 complexes is impared and kinetics of arsenite-dependent, H2O2-dependent, and sublethal heat shock-induced insolubilization of Hsp25 is delayed. Similarly, green fluorescent protein-tagged Hsp25 shows retarded subcellular accumulation into stress granules in MK2-deficient cells after arsenite treatment. Decreased insolubilization of Hsp25 in MK2-deficient cells correlates with increased resistance against arsenite, H2O2, and sublethal heat shock treatment and with decreased apoptosis. In contrast, after severe, lethal heat shock MK2-deficient embryonic fibroblasts cells show fast and complete insolubilization of Hsp25 independent of MK2 and no increased stress resistance. Hence, MK2-dependent formation of insoluble stress granules and irreversible cell damage by oxidative stresses and sublethal heat shock correlate and only upon severe, lethal heat shock MK2-independent processes could determine insolubilization of Hsp25 and are more relevant for cellular stress damage.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号