首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse liver contains a human urinary trypsin inhibitor (urinastatin, UT)-like immunoreactive substance with trypsin inhibitory activity. Northern blot analysis demonstrates the presence of the appropriate 1.3 kb mRNA band in liver tissue but not in kidney or other tissues examined. Administration of hydrocortisone, which is known to increase the urinary excretion of the UT-like substance, increased the levels of UT-like substance in serum and in the liver tissue. In contrast, deoxycorticosterone acetate did not have such an effect. These results suggest that the gene encoding UT-like substance is primarily expressed in the liver of the mouse, and that glucocorticoids play an important role in regulating the hepatic synthesis of UT-like substance. Furthermore, these findings indicate that the mouse is a suitable species for research on the biological function of UT or UT-like substances.  相似文献   

2.
K Kimura  H Moriya 《Histochemistry》1984,80(5):443-448
Localization of kallikrein in the human kidney was investigated by two markers: kallikrein-like activity and kallikrein antigenicity. Kallikrein-like activity was demonstrated enzyme-histochemically by using a synthetic substrate for kallikrein, pro-phe-arg-naphthyl-ester. Kallikrein antigenicity was demonstrated by the unlabelled antibody peroxidase-antiperoxidase method using an antiserum against human urinary kallikrein. The kallikrein-like activity was localized in the proximal tubular cells without any corresponding kallikrein antigenicity. Neither kallikrein-like activity nor kallikrein antigenicity was noticed in any other tubular cell. These results are contrary to those in the ductal cells of the human parotid gland where the kallikrein-like activity and the kallikrein antigenicity were identical in their locations. The peroxidase-antiperoxidase method revealed, for the first time, kallikrein antigenicity both in the interstitium and in the basement membrane region of Bowman's capsule and of all the tubules, possibly representing circulating glandular kallikreins deposited in the renal tissue. Thus, the present findings are consistent with the hypothesis that the urinary (renal) kallikreins are derived from circulating glandular kallikreins.  相似文献   

3.
Summary The influence of fixation on the immunocytochemical localization of tissue kallikrein in the kidney has been evaluated using both monoclonal and polyclonal antibodies. These studies have provided several results relevant to kallikrein localization in kidney: (1) the intensity and distribution of immunostaining with both polyclonal and monoclonal anti-kallikrein antibodies is fixation-dependent; (2) the most intense and consistent localizations of kallikrein are in the connecting tubule and the cortical collecting duct of the nephron; (3) kallikrein-like immunoreactivity is seen in proximal tubules with polyclonal but not with non-cross-reactive monoclonal antibodies; and (4) fixatives which disrupt membranes reveal a kallikrein-like antigen in straight tubules of the outer medulla. However, immunostaining with monoclonal antibodies indicates that much of the observed immunostaining at this site probably represents cross-reactivity with another member of the kallikrein family of enzymes.  相似文献   

4.
Summary Localization of kallikrein in the human kidney was investigated by two markers: kallikrein-like activity and kallikrein antigenicity. Kallikrein-like activity was demonstrated enzyme-histochemically by using a synthetic substrate for kallikrein, pro-phe-arg-naphthyl-ester. Kallikrein antigenicity was demonstrated by the unlabelled antibody peroxidase-antiperoxidase method using an antiserum against human urinary kallikrein. The kallikrein-like activity was localized in the proximal tubular cells without any corresponding kallikrein antigenicity. Neither kallikrein-like activity nor kallikrein antigenicity was noticed in any other tubular cell. These results are contrary to those in the ductal cells of the human parotid gland where the kallikrein-like activity and the kallikrein antigenicity were identical in their locations. The peroxidase-antiperoxidase method revealed, for the first time, kallikrein antigenicity both in the interstitium and in the basement membrane region of Bowman's capsule and of all the tubules, possibly representing circulating glandular kallikreins deposited in the renal tissue. Thus, the present findings are consistent with the hypothesis that the urinary (renal) kallikreins are derived from circulating glandular kallikreins.  相似文献   

5.
Summary In the rat kidney the presence of the kallikrein-like pro-phe-arg-naphthylester esterase activity was demonstrated by a simultaneous coupling azo dye method. The enzyme was identified as a serine-protease because it was inhibited by preincubation with diisopropyl-fluorophosphate and unaffected by sodium iodoacetate. Since kallikrein is a serine-protease and pro-phe-arg-naphthylester is a synthetic and sensitive substrate for kallikrein, the enzyme activity revealed by this method was considered to represent kallikrein, although non-kallikrein esterase activity is not totally excluded. The enzyme activity was localized mainly in the outer stripe of the outer medulla, with focal extensions primarily only in the lower half of the cortex corresponding to the medullary rays.  相似文献   

6.
Summary Localization of kallikrein in the human parotid gland was investigated simultaneously by two markers: kallikrein-like (enzyme) activity and kallikrein antigenicity. Kallikrein-like activity was histochemically demonstrated by using a synthetic substrate, pro-phe-arg-naphthylester. Kallikrein antigenicity was demonstrated by an unlabelled antibody peroxidase-antiperoxidase method, where monospecific antiserum against highly purified urinary kallikrein was used as the primary antiserum. The results showed that kallikrein-like activity and kallikrein antigenicity were identical in their locations in the ductal cells, being localized in the luminal part of the striated ducts and to a lesser degree in the excretory ducts. This indicates the presence of active kallikrein in these regions. No enzyme activity nor antigenicity was observed either in acini or in intercalated ducts. Moreover, the peroxidase-antiperoxidase method reveated kallikrein antigenicity for the first time extracellularly in the basement-membrane region of acini and of ducts as well as in the interstitium surrounding ducts and major vessels.  相似文献   

7.
K Kimura  H Moriya 《Histochemistry》1984,80(4):367-372
Localization of kallikrein in the human parotid gland was investigated simultaneously by two markers: kallikrein-like (enzyme) activity and kallikrein antigenicity. Kallikrein-like activity was histochemically demonstrated by using a synthetic substrate, pro-phe-arg- naphthylester . Kallikrein antigenicity was demonstrated by an unlabelled antibody peroxidase-antiperoxidase method, where monospecific antiserum against highly purified urinary kallikrein was used as the primary antiserum. The results showed that kallikrein-like activity and kallikrein antigenicity were identical in their locations in the ductal cells, being localized in the luminal part of the striated ducts and to a lesser degree in the excretory ducts. This indicates the presence of active kallikrein in these regions. No enzyme activity nor antigenicity was observed either in acini or in intercalated ducts. Moreover, the peroxidase-antiperoxidase method revealed kallikrein antigenicity for the first time extracellularly in the basement-membrane region of acini and of ducts as well as in the interstitium surrounding ducts and major vessels.  相似文献   

8.
Summary The renal origin of kallikrein is now clearly established. However, the presence of kallikrein in urine raises questions about a possible physiological role of this enzyme at the urinary level. We have already demonstrated the presence of kallikrein-like substance in rat ureter. For establishing the continuity of the presence of kallikrein-like substance along the urinary tract we have studied the localization of immunoreactive kallikrein-like substance in urinary bladder of the normal rat by immunohistochemical methods for light- and electron-microscopy, using an antibody against rat urinary kallikrein. By light microscopy, kallikrein-like substance was found to be associated with the lamina propria, which is the connective tissue component which constitutes one layer of the bladder wall. Weak staining was present in the smooth-muscle layer. By immuno-electron microscopy, kallikrein-like substance was localized in fibroblasts which were present in the connective tissue and which penetrated into the layer of smooth muscle; immunoreactivity was observed in endoplasmic reticulum, Golgi apparatus and free polyribosomes. Immunolabelling was demonstrated in no other part of the wall bladder and in no other cellular component. The continuity of the presence of kallikrein-like substance from the kidney to the urinary bladder gives new indications concerning the significance of this system in renal physiology.  相似文献   

9.
The expression of two kallikrein gene family members in the rat kidney   总被引:1,自引:0,他引:1  
The mRNAs for two kallikrein gene family members expressed in the rat kidney have been characterized. One mRNA (PS) has previously been found in the pancreas and submaxillary gland and encodes true kallikrein. The second mRNA (K1) encodes a novel kallikrein-like enzyme expressed in the kidney and submaxillary gland that retains many of the key amino acid residues for the characteristic enzymatic cleavage specificity of kallikrein. Two oligonucleotide hybridization probes specific for the K1 mRNA demonstrate that the K1 mRNA is expressed in the kidney and submaxillary gland, but in none of the other eight tissues known to express one or more members of the rat kallikrein gene family. The K1 mRNA is the dominant kallikrein-related mRNA of the kidney, expressed at roughly 10 times the level of the true kallikrein (PS) mRNA. In the submaxillary gland the K1 mRNA is expressed at roughly one-fourth the level of true kallikrein mRNA.  相似文献   

10.
Tissue kallikrein of human seminal plasma is secreted by the prostate gland   总被引:1,自引:0,他引:1  
Samples of human seminal plasma were subjected to gel filtration, and the eluted fractions were analysed for their contents of tissue kallikrein-like antigen, arginine esterase activity and kininogenase activity. Two peaks of tissue kallikrein-like antigen were detected with apparent molecular masses of about 72 and 48 kDa. As judged by the criteria of molecular mass, immunoreactivity, kininogenase activity, identification of the released kinin as kallidin and inhibition studies, a genuine tissue kallikrein has been identified in the 48-kDa peak. In addition, this peak contains one or more species of immunoreactive tissue kallikrein which differ in molecular mass and enzymatic activities. The 72-kDa peak probably represents the complex of tissue kallikrein with alpha 1-proteinase inhibitor rather than a true high molecular mass tissue kallikrein. The prostate gland was identified as the site of origin of the tissue kallikrein in the seminal fluid by indirect methods and by demonstrating immunoreactive tissue kallikrein in prostatic tissue and secretion.  相似文献   

11.
Activation of purified urinary inactive kallikrein by an extract from the rat kidney cortex was investigated. The extract produced a dose-dependent activation of the inactive kallikrein and the optimum pH for this activation was 5.0. Marked depression of the activation was observed when the extract was pre-incubated with E-64, p-CMB and iodoacetate, but not with DFP, PMSF or pepstatin A. The molecular weight of the inactive kallikrein (Mr 44,000) was reduced to 38,000 by treatment with the extract, this molecular weight value being identical with that of urinary active kallikrein. These results indicate that the rat kidney cortex contains a protease catalyzing conversion of urinary inactive kallikrein into its active form, and that the protease has properties compatible with those of a thiol protease, but not of trypsin which has been used as a tool for the activation of urinary inactive kallikrein. The thiol protease is probably one of regulators of the kallikrein-kinin system in the kidney.  相似文献   

12.
Multiple species of ornithine decarboxylase were separated by chromatography of mouse kidney extract on DEAE-Sepharose CL-6B. The elution patterns of ornithine decarboxylase activity and immunoreactive enzyme protein in the kidneys of untreated and testosterone-treated male mice did not differ otherwise than in order of magnitude. The immunoblots of the chromatography fractions neither revealed any differences in enzyme subunit size between two experimental groups. These findings suggest that the stabilization of ornithine decarboxylase by androgens is not due to the molecular changes of enzyme protein.  相似文献   

13.
The subcellular distribution, kinetic properties, and endogenous substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) were examined in mouse kidney cortex. Protein kinase C associated with the particulate, mitochondrial, and brush border membrane fractions was assayed after solubilization in 0.2% Triton X-100 under conditions shown to be noninhibitory to catalytic activity. Of recovered activity, 52% was associated with the cytosolic fraction; mitochondrial and brush border membrane associated protein kinase C constituted 12 and 3%, respectively, of the activity recovered in the particulate fraction. Protein kinase C associated with brush border membranes exhibited a high affinity for ATP (apparent Km = 62 +/- 10 microM) and the highest apparent maximal velocity (1146 +/- 116 pmol P/(mg protein.min] of the renal fractions examined. Maximal stimulation of protein kinase C by diacylglycerol (in the presence of phosphatidylserine) was achieved at both 25 and 300 microM calcium in all renal fractions. These results are consistent with previous reports demonstrating that diacylglycerol increases the apparent affinity of protein kinase C for calcium. Phorbol 12-myristate 13-acetate, but not 4 alpha-phorbol, was able to substitute for diacylglycerol and stimulate cytosolic and particulate renal protein kinase C. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a specific inhibitor of protein kinase C, led to significant inhibition of catalytic activity in all renal subcellular fractions. Endogenous substrates for protein kinase C were demonstrated in renal cytosolic (26, 45, 63, and 105 kilodaltons (kDa], particulate (26, 33, 68, and 105 kDa), mitochondrial (43 kDa), and brush border membrane (26, 41, 52, 88, and 105 kDa) fractions. The possible physiological significance of protein kinase C in mammalian kidney is discussed.  相似文献   

14.
This study examined whether the neurointermediate lobe (NIL) of the rat pituitary contains latent kallikrein- and thrombin-like proteases activated by trypsin. Partial characterization of such proteases was attempted. Also examined were the distribution of proteolytic activity within the NIL and levels in both male and female lobes. NIL homogenates were assayed for proteolytic activity at pH 8.0 before and after incubation with trypsin (10 micrograms/ml). Trypsin caused a 10-fold activation of kallikrein-like activity and a 40-fold activation of thrombin-like activity in NIL homogenates. The kallikrein-like activity was separated into two components using diethylaminoethyl-Sephadex. The predominant kallikrein-like protease was a potent kininogenase closely related or identical to glandular kallikrein and was almost exclusively localized to the intermediate lobe. The second kallikrein-like protease (kallikrein A) was a weak kininogenase sensitive to inhibition by both soybean trypsin inhibitor and aprotinin and was similarly concentrated in both the neural lobe and the intermediate lobe. The thrombin-like protease was sensitive to inhibition by hirudin (a specific thrombin inhibitor), clotted fibrinogen, and was slightly more concentrated in the neural lobe than in the intermediate lobe. NILs from female rats contained approximately 40% less kallikrein activity than NILs from male rats but did not differ in their content of thrombin-like activity.  相似文献   

15.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

16.
We have used oligonucleotide probes specific for members of the rat kallikrein/tonin gene family (PS, S1, S2, S3, K1, and P1) to establish which arginyl esteropeptidase (kallikrein-like) genes are expressed in the prostate. We have also compared the expression and androgen dependence of these genes in prostate, submaxillary gland (SMG) and kidney. Only S3 (tonin-like) and P1 (kallikrein-like) are expressed in the prostate, with S3 very much more abundant. Prostatic S3 mRNA disappears after 8 days castration and is restored to intact levels by dihydrotestosterone (DHT) but not estradiol benzoate (EB) for 8 days. Prostate P1 mRNA levels were similarly but not identically affected. All six genes are expressed in the SMG, with PS (true kallikrein) the most abundant. Levels of PS mRNA in SMG are unaffected by castration, DHT, or EB treatment, although mRNA levels of other kallikrein-like (S1, K1, and P1), tonin (S2), and tonin-like (S3) genes fall 40-60% after castration, and are unaffected or partially restored by DHT and/or EB administration. Only PS and K1 are expressed in the kidney, at much lower levels than in the SMG and unaffected by castration or steroids. These studies thus confirm and extend the concept of tissue specificity of arginyl esteropeptidase gene expression, and further demonstrate that the same gene(s) is differentially regulated by androgens in the rat prostate, SMG, and kidney.  相似文献   

17.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

18.
The cDNA encoding of a complement factor D/adipsin and kallikrein-like serine protease, designated PoDAK, was isolated from the olive flounder Paralichthys olivaceus. PoDAK cDNA encodes a polypeptide with 277 amino acids containing conserved catalytic triad residues of serine proteases. The amino acid sequence of PoDAK showed high similarity to the kallikrein-like protein of medaka, mammalian adipsin/complement factor D and tissue kallikrein homolog, KT-14 of trout, complement factor D of zebrafish, and shared 31.6–36.8% homology with complement factor D/adipsin known from other species, including mammals. Phylogenetic analysis revealed that PoDAK clustered with the kallikrein-like protein of medaka and mammalian adipsin/complement factor D and tissue kallikrein homolog KT-14 of trout. The expression of PoDAK mRNA was high in the gills and heart, moderate in muscle, liver, intestine, stomach, kidney, and spleen of healthy flounder, and increased in the kidney, liver, and spleen of flounder challenged by the viral hemorrhagic septicemia virus (VHSV) or Streptococcus iniae. In situ hybridization confirmed that PoDAK mRNA is localized in the kidney and heart of individuals infected with VHSV. Further investigations are needed to clarify the function of PoDAK in vivo and in vitro.  相似文献   

19.
Mouse kallikrein 24 is thought to encode a functional serine protease belonging to the mouse glandular kallikrein gene family. Preliminary results suggest that this kallikrein may play a role in testis function in adult mice. In order to obtain insights into its physiological functions, we undertook molecular and biochemical analyses of this enzyme. We cloned a cDNA for kallikrein 24 from the adult mouse testis cDNA library. Kallikrein 24 was expressed in the kidney, submandibular glands, ovary, epididymis, and testis of the mouse. In the testis, kallikrein 24 mRNA was detectable at 4 weeks of postnatal development, and became more prominent thereafter. The kallikrein 24 gene was expressed exclusively in the Leydig cells of adult mice. When Leydig cells isolated from a 2-week-old mouse testis were cultured in the presence of testosterone, kallikrein 24 expression was induced. Active recombinant enzyme showed trypsin-like specificity, favorably cleaving Arg-X bonds of synthetic peptide substrates. The enzymatic activity was strongly inhibited by typical serine protease inhibitors. Mouse kallikrein 24 degraded casein, gelatin, fibronectin and laminin. These results suggest that the enzyme may play a role in the degradation of extracellular matrix proteins in the interstitial area surrounding the Leydig cells of the adult mouse testis. The present findings should contribute to future physiological studies of this mouse testis protease.  相似文献   

20.
Nucleotide sequence of cloned cDNA for human pancreatic kallikrein   总被引:6,自引:0,他引:6  
Cloned cDNA sequences for human pancreatic kallikrein have been isolated and determined by molecular cloning and sequence analysis. The identity between human pancreatic and urinary kallikreins is indicated by the complete coincidence between the amino acid sequence deduced from the cloned cDNA sequence and that reported partially for urinary kallikrein. The active enzyme form of the human pancreatic kallikrein consists of 238 amino acids and is preceded by a signal peptide and a profragment of 24 amino acids. A sequence comparison of this with other mammalian kallikreins indicates that key amino acid residues required for both serine protease activity and kallikrein-like cleavage specificity are retained in the human sequence, and residues corresponding to some external loops of the kallikrein diverge from other kallikreins. Analyses by RNA blot hybridization, primer extension, and S1 nuclease mapping indicate that the pancreatic kallikrein mRNA is also expressed in the kidney and sublingual gland, suggesting the active synthesis of urinary kallikrein in these tissues. Furthermore, the tissue-specific regulation of the expression of the members of the human kallikrein gene family has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号