首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines factors affecting oral bioaccessibility of metals in household dust, in particular metal speciation, organic carbon content, and particle size, with the goal of addressing risk assessment information requirements. Investigation of copper (Cu) and zinc (Zn) speciation in two size fractions of dust (< 36 μ m and 80–150 μ m) using synchrotron X-ray absorption spectroscopy (XAS) indicates that the two metals are bound to different components of the dust: Cu is predominately associated with the organic phase of the dust, while Zn is predominately associated with the mineral fraction. Total and bioaccessible Cu, nickel (Ni), and Zn were determined (on dry weight basis) in the < 150 μ m size fraction of a set of archived indoor dust samples (n = 63) and corresponding garden soil samples (n = 66) from the City of Ottawa, Canada. The median bioaccessible Cu content is 66 μ g g?1 in dust compared to 5 μ g g?1 in soil; the median bioaccessible Ni content is 16 μ g g?1 in dust compared to 2 μ g g?1 in soil; and the median bioaccessible Zn content is 410 μ g g?1 in dust compared to 18 μ g g?1 in soil. For the same data set, the median total Cu content is 152 μ g g?1 in dust compared to 17 μ g g?1 in soil; the median total Ni content is 41 μ g g?1 in dust compared to 13 μ g g?1 in soil; and the median total Zn content is 626 μ g g?1 in dust compared to 84 μ g g?1 in soil. Organic carbon is elevated in indoor dust (median 28%) compared to soil (median 5%), and is a key factor controlling metal partitioning and therefore bioaccessibility. The results show that house dust and soil have distinct geochemical signatures and should not be treated as identical media in exposure and risk assessments. Separate measurements of the indoor and outdoor environment are essential to improve the accuracy of residential risk assessments.  相似文献   

2.
Runoff with contaminated urban soil has an environmental risk to the aquatic environment. An assessment of heavy metals in street dust particles from a small town and their risks to the township stream network were conducted at Yangtze River delta. This assessment is based on measurement of heavy metal contents in dust particles with different particle sizes, river sediments, and suspended solids of urban runoff. The ranges of heavy metal content were 0.8–4.3, 16–380, 69–240, 9.3–350, 9.6–863 and 67–1170 mg/kg dry street dust, for Cr, Cu, Ni, Pb and Zn, respectively. Approximately 63%-71% of heavy metals were associated with particles less than 250 μ m; this particle size accounted for 40% of the total mass of street dusts. Of the five land use areas, the industrial areas had the highest heavy metal level. The smaller particle size fraction has a higher heavy metal content, low density, high mobility in runoff, and thus is a higher risk to the stream network. The topographical and hydrological features of the landscape also influence the transport of the contaminated street dusts to the aquatic environment.  相似文献   

3.
We studied the structural organization of microbial decomposer communities by comparing patterns of genetic complexity over a template defined by site, season and detrital particle size. Epibenthic sediment samples were collected monthly from a Lake Erie coastal wetland and a small woodland stream, and sieved into five fine particulate organic matter (FPOM) size ranges: 1000–500 (500), 500–250 (250), 250–125 (125), 125–63 (63) and 63–38 (38) m. Whole community DNA-DNA hybridizations were used to compare the structural similarity of the microbial communities associated with each sample. Microbial community heterogeneity increased as particle size decreased, and declined from a summer maximum to a late winter minimum. Cluster analysis of hybridization scores partitioned the communities into two groups: one associated with the 500, 250 and 125 m fractions and a second with the 63 and 38 m fractions. The larger particles were easily recognized as comminuted plant detritus; the smaller particles were amorphous, presumably formed through the aggregation of dissolved organic carbon. This disjunction in particle morphology and microbial community diversity that occurs at about 100 m appears to delineate two trophic resources whose origin and fate may be largely independent.  相似文献   

4.
Planktic foraminiferal faunas from different environments in the Arabian Sea were size fractionated using 14 sieves with meshes between 100 and 710 μm, to assess the effect of the sieve mesh size cut off level on the faunal composition and to determine the size frequency distribution of individual species. Nine samples from a plankton pump and a towed net, a sediment trap, a box-core and a piston core were selected, to cover living and settling flux faunas as well as fossil faunas from the sediment. In living faunas, most species show an exponential size frequency distribution, with highest numbers in the finest interval of the size spectrum. In sediment trap and core samples, individual species size frequency distributions may consist of: (1) an exponential distribution of relatively small pre-adult specimens; (2) a Gaussian-shaped distribution of larger specimens, which may be classified as adult or terminal; or (3) a combination of both. The distributions are separated using a best fit technique. The composition of the total planktic foraminiferal fauna strongly changes along the size spectrum. Dominant taxa in >355 μm fractions are Orbulina universa, Globorotalia menardii, Globorotalia tumida, Globigerinella siphonifera and Globigerinoides sacculifer, in 125–355 μm fractions Globigerina bulloides, Globigerinoides ruber, Neogloboquadrina dutertrei and Globigerinita glutinata, and in <125 μm fractions Dentigloborotalia anfracta, Tenuitella compressa, Tenuitella iota, Turborotalita quinqueloba and the immature specimens of larger species. Consequently, the choice of the sieve mesh size strongly determines the percent composition of the assemblage and in turn the paleoceanographic interpretations based on these counts. Species richness and the Shannon diversity increase with decreasing sieve mesh size, while equitability generally decreases with decreasing size. In the water column approximately 60% of the fauna (>100 μm) is present in the 100–125 μm fraction and 1–6% is larger than 250 μm. In samples representing a settling flux (sediment trap and sediment samples) 29–57% of the fauna is present in the 100–125 μm fraction, while 6–23% is larger than 250 μm. Size frequency distributions of the dextral Neogloboquadrina complex (= Neogloboquadrina dutertrei and Neogloboquadrina pachyderma + P–D intergrades) show a bimodal pattern; a smaller peak reflecting dextral Neogloboquadrina pachyderma, and a larger peak of adult Neogloboquadrina dutertrei. By applying a best fit technique to the data, the two species may be separated from each other. In size fractions larger than 150 μm most species have reached the adult stage of ontogeny and we recommend this mesh size for standard faunal analysis. In addition, sieve mesh sizes of 125 and 250 μm have to be used to obtain a reliable estimate of the abundance of small and large species, respectively.  相似文献   

5.
Hardwood dust can cause dermatitis, respiratory disease, allergies and nasal cancer in humans. A major concern with animal hardwood bedding is its dust content and its possible effects on animals and animal technicians. Previous reports on the quality control of rodent bedding did not specify sample size or shake time for measuring bedding particle size and dust content. These variables could alter particle size analyses. In an effort to more accurately characterize bedding particle size and dust content, 50g and 100g samples of hardwood bedding were shaken for 0.5, 1, 2, 3, 4, or 5 minutes in a portable sieve shaker containing U.S. standard sieves (Nos. 8, 20, 30 and 50) to determine optimum sample size and shake time. Significant differences (P less than 0.05 or greater) were observed in the percent of bedding retained on a No. 8 sieve when 50g and 100g samples were taken for 30 seconds or for 1 minute. Samples shaken for 2 or more minutes did not show any statistical differences in the percent of bedding which was retained on or passed through the different sieves. Major differences occurred in the percent of bedding which was retained or passed through the different sieves, when the shake time was varied from 0.5 to 5 minutes. These results indicated that 0.5 or 1 minute was definitely not enough time to accurately measure bedding particle size and dust content and that the sample size and shake time must be consistent in order to accurately compare the particle size and dust content of different shipments of bedding or to compare bedding from different vendors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
It has been suggested that the scaling relationships of many features of the physical environment and biological traits are fractal-like, but for the marine benthic infauna certain aspects of the environment clearly are not. These include temporal features such as the cycles of annual climate, primary production and tides, and also some spatial features such as sediment granulometry and the size of the primary producers that constitute the food supply. We explicitly addressed these issues by determining the degree to which infaunal assemblage structure (diversity, species composition, spatial pattern) varies with mesh size, sample size and sample dispersion within an apparently homogeneous area of coarse intertidal sand in the Isles of Scilly, UK. Samples were extracted using a standard range of 5 mesh sizes (63, 125, 250, 500, 1000 μm), with the sample areas and distances between samples scaled to the mesh size. All metazoans were identified to species level. Diversity and species composition did not show a gradual and even degree of change over the size range. Instead, they showed a dramatic stepwise change between the 250 and 500 μm mesh size samples, being relatively constant in the < 500 and > 500 μm categories, with diversity higher in the former. Higher proportions of species in the < 500 μm categories had values of an index of dispersion significantly different to 1 than among species in the > 500 μm categories. This suggests a fractal structure within but not between the < 500 and > 500 μm body size categories. The implications of this for rapid diversity assessment by extrapolation between size classes are discussed. Although the interplay between 3 and 2 dimensional processes in what is a essentially a 2-D study may account for some of the observations, comparative studies suggest that these patterns do not simply correspond to the physical scaling of habitat complexity, and they must therefore relate to some more universal scaling relationships that are not fractal-like. We suggest that the important relationships are those between body size and various biological characteristics such as feeding behaviour, reproductive mode and life history as they are affected by the spatial and temporal structure of the environment.  相似文献   

7.
为了明确草方格人工固沙造林植被恢复过程中土壤颗粒组成、分形维数及对土壤理化性质的影响,以腾格里沙漠东南缘2016年(1 a)、2013年(4 a)和1987年(30 a)草方格固沙林为研究样地,以周围流动沙地为对照(CK),研究了草方格固沙造林后植被恢复过程中土壤颗粒组成、分形维数及与土壤理化性质的作用关系.结果表明: 100~250、250~500 μm土壤颗粒含量较高,分别为42.5%~80.1%、12.5%~42.2%;50~100 μm土壤颗粒含量居中,为0.2%~20.8%;<2和2~50 μm的土壤颗粒含量次之,分别在0~1.3%和0~22.7%;而500~1000 μm的土壤颗粒含量较低,在0.3%以下.<2和2~50 μm土壤颗粒仅在30 a固沙林有分布;50~100 μm土壤颗粒分布为30 a最高,4 a和1 a居中,而CK最低;100~250 μm土壤颗粒分布依次为4 a>1 a>CK>30 a;250~500 μm土壤颗粒分布为CK>1 a>4 a>30 a;但500~1000 μm土壤颗粒在各样地分布均较少,且不同样地之间无显著差异.研究区土壤颗粒分形维数为0.54~2.59,并且不同样地间存在显著差异,表现为30 a最高,4 a与1 a居中,而CK最低.土壤颗粒分形维数与土壤黏粒、粉粒、极细砂粒含量呈极显著正相关,而与土壤中砂粒呈极显著负相关.土壤颗粒分形维数与土壤电导率、有机碳、全氮和碳氮比均呈极显著正相关,而与土壤pH和含水量无相关性.土壤中<2、2~50、50~100 μm颗粒与土壤电导率、有机碳、全氮和碳氮比均呈极显著正相关,而250~500 μm土壤颗粒与上述4个土壤指标和土壤含水量呈显著负相关.500~1000 μm土壤颗粒与土壤含水量亦呈极显著负相关.在腾格里沙漠东南缘地区利用草方格进行人工固沙植被建设,可有效促进土壤颗粒细粒化,长期演变导致土壤黏粒和粉粒及土壤分形维数显著增加,促使土壤有机碳和全氮含量提高,有利于土壤理化性质改善和促进沙漠化治理.  相似文献   

8.
To investigate the contamination level, distribution, possible source, and human exposure risk of polycyclic aromatic hydrocarbons (PAHs) in the urban traffic environment, 15 PAHs were measured in 34 road dust samples (particle size < 25 μm) collected from three grades of roads and park paths in Xinxiang, China. ΣPAHs concentrations ranged from 311 to 21200 ng g?1, with a mean of 5890 ng g?1 and decreased in the following order: main roads (7650 ng g?1) > collector streets (7410 ng g?1) > bypasses (2970 ng g?1) > park paths (1570 ng g?1), indicating that significant positive correlation existed between PAH contamination and traffic density. PAHs in all samples were dominantly composed of 4-ring PAHs, accounting for 44.8% of the total. Pyrene, fluoranthene, and chrysene were the predominant individual components and accounted for 14.7% (1.2–19.2%), 12.9% (3.3–20.3%), and 11.0% (2.5–18.6%) of ΣPAHs, respectively. The specific isomer ratios indicated that traffic emission was the dominant source of PAHs in road dust. The incremental lifetime cancer risk values showed that cancer risk from exposure to road dust–borne PAHs was acceptable for local residents in Xinxiang.  相似文献   

9.
The initial quantitative breakdown of fine particulate organic matter (FPOM) was investigated by measuring the loss (over 73 days) of substrate mass of particles of known size ranges (53–125 µm, 125–250 µm, 250–500 µm, 500 µm-1 mm) and derived from known organic sources (Alnus rubra, Acer macrophyllum, Polystichum munitum). Qualitative examinations (organic content, C : N ratio) also were made. Particles ranging from 500 µm to 1 mm in diameter differed greatly from particles in other size ranges, and results of studies with these particles closely resembled results of coarse particulate (CPOM) leaf pack studies. Despite variation, alder particles generally exhibited the greatest mass loss, those of sword-fern, the least, and mass loss of bigleaf maple particles was intermediate. Organic contents of all particle substrates decreased over time. In general, the C : N ratios of alder particles increased, those of bigleaf maple decreased, and those of sword-fern exhibited little change. All particle substrates were incubated in the field in vials, which allowed for influx of natural detritus of unknown source and period of residence. Given the overall abundance and prevalence of the FPOM resource in lotic systems, standardization of a procedure such as that used in this investigation would be useful in extending understanding of stream system processes, including detrital processing and decomposition.  相似文献   

10.
The objective of this study was to investigate the effect of large granulated lactose carrier particle systems on aerosol performance of dry powder inhaler formulations. Granulated lactose carriers with average sizes ranging from 200 to 1,000 μm were prepared and subsequently fractionated into separate narrow size powders. The fractionated granulated lactose (GL) samples were characterized in terms of size, specific surface area, surface roughness, morphology, density, flowability, and solid-state. The in vitro aerosolization performance was performed on the different size fractions of GL samples from a commercial inhaler device (Aerolizer®) with a model formulation (2% w/w salbutamol sulfate). The cascade impaction parameters employed were 60 or 90 L/min with standard (aperture size, 0.6 mm) or modified piercing holes (aperture size, 1.2 mm) of the inhaler loaded capsules. It was shown that the largest size fraction formulation (850–1000 μm) had a slight improvement in the fine particle fraction (FPF) compared to immediately preceding size fractions, explained by a smaller adhesive force between drug and carrier. Compared to commercial piercing holes, enlarged piercing holes generated a slight decreasing trend of FPF as the lactose powder sizes increased from 200–250 μm to 600–850 μm, perhaps due to the reduced detachment force by flow forces. The size, surface roughness, density, and flowability of lactose carrier as well as device design all contributed to the aerosol dispersion performance of granulated lactose-based adhesive mixtures. It was concluded that poorer or enhanced redispersion performance is not an inherent property to the significantly large size of granulated lactose carriers as previously contended.KEY WORDS: adhesive force, carrier roughness, carrier size, DPI formulations, granulated lactose  相似文献   

11.
Heavy metal pollution of the soils around an abandoned Pb-Zn mine site located in the Alcudia Valley (South Central Spain) have been characterized by analysis of extractable and total metal concentrations in 60 samples of arable, pasture, and mine lands. The samples showed a broad range of size-particle distribution, cation exchange capacity, and pH values as well as high levels of total metal concentrations (up to 98510 mg kg?1 of Pb, up to 20912 mg kg?1 of Zn, and up to 61 mg kg?1 of Cd). In order to assess the potential availability of metals the metal partitioning in two different soil size fractions (<2 mm and <63 μm) was determined using EDTA and CaCl2 as sequestering reagents. The average contents of Pb, Zn, and Cd in the <63 μm particle size fraction for both extractions were higher than those of the <2 mm fraction due to the high metal adsorption capacity of the fine soil particles. Concentrations of heavy metals extracted by CaCl2 were up to three orders of magnitude lower than those extracted by EDTA, because CaCl2 only extracts the easily mobile fraction. Metal concentrations extracted by both procedures in the two granulometric fractions increased with total metal concentrations, thus increasing the potential environmental risk associated to heavy metal pollution.  相似文献   

12.
Sediment loading by human activities has increased in recent years and sedimentation in coastal areas is problematic because it removes seaweed forests. In this study, we examined the effects of different sediment quantities (0, 2, 4, and 6 mg cm?2) and particles sizes (<100, 100–250, and 250–600 μm) on zygote attachment, and germling survival and growth of Sargassum thunbergii, an economically and ecologically important species. Zygote attachment was negatively correlated with increased sediment quantities. However, it was not significantly different among sediment particle sizes. In addition, survival and growth of germlings were significantly inhibited by increased sediment quantity. Smaller particle size (< 100 μm) had greater negative impact on the survival and growth than bigger ones. Results of the present study suggest that early development of S. thunbergii is significantly inhibited by sediment. This might be a vital factor that results in forest depletion in Korea.  相似文献   

13.
Comparison of Source Identification of Metals in Road-Dust and Soil   总被引:1,自引:0,他引:1  
Source identification of toxic metals is very critical for pollution prevention and human health protection. Many studies only use either road dust metal data or soil metal data to evaluate metal contamination and identify pollution sources, and this may lead to the exclusion of some important information. In this study, the differences of metal spatial distribution and source identification between road dust and associated soil in an industrial area were investigated.

Results indicate the metal concentrations in road dust were generally higher than those in soil. Based on the average concentrations, the order for dust metal concentrations was Fe>>Zn>>Pb>Cu>Cr>Ni. The order for soil metal concentrations was slightly different, namely Fe>>Zn>>Cu~Pb>Ni>Cr. The spatial distributions of metals in the road dust were very different from those in the soil, except for Fe. The GIS results indicate that elevated levels of Fe, Zn, and Pb were present in road dust near a steel plant. High concentrations of Cu, Cr, and Ni appeared at a road intersection. Elevated metal concentrations of Fe, Zn, Pb, Cu, and Cr were present in soil around the steel plant. A coal-fired power plant did not seem to be a significant metal source in this study. Significant correlations for dust metals imply that these were well mixed in the study area. The metal sources identified by PCA with soil metal data were obviously different from those identified with road dust metal data. When road dust metal data were used, the changes of PCA analyzed areas slightly influenced the source identification. The PCA results were obviously influenced by changes of analyzed areas when soil metal data were used.  相似文献   


14.
15.
Cellulosic feedstocks for bioenergy differ in composition and processing requirements for efficient conversion to chemicals and fuels. This study discusses and compares the processing requirements for three lignocellulosic feedstocks??soybean hulls, wheat straw, and de-starched wheat bran. They were ground with a hammer mill to investigate how differences in composition and particle size affect the hydrolysis process. Enzyme hydrolysis was conducted using cellulase from Trichoderma reesei at 50°C and pH 5. Ground fractions were also subjected to dilute sulfuric acid treatment at 125°C, 15 psi for 30 min prior to cellulase treatment. Reducing particle size of biomass resulted in segregated components of feedstock. Grinding wheat straw to particle size <132 ??m resulted in measured lignin content from 20% to ??5% and reduced hemicellulose content. Reducing lignin content increased the effectiveness of enzyme hydrolysis of wheat straw. Particles sized <132 ??m exhibited the highest soluble sugar release upon hydrolysis for all three feedstocks studied. Hemicellulose digestion improved with dilute sulfuric acid treatment with residual hemicellulose content <5% in all three feedstocks after acid treatment. This enhanced the cellulase action and resulted in approximately 1.6-fold increase in sugar availability in de-starched wheat bran and ??1.5-fold for wheat straw and soybean hulls. Higher sugar availability in wheat bran after acid-mediated enzyme treatment correlated to higher ethanol yields during yeast fermentation compared with soybean hulls and wheat straw.  相似文献   

16.
Microbubble has been applied for the recovery of yeast cells from their growth medium using the bioflocculant–chitosan. Results reaching 99% cell recovery were obtained under various conditions examined. The result of bubble size distribution showed that mean bubble size increased as microbubble diffuser pore size was increased. Also, cell recovery efficiency was a function of both bubble size and particle size (cell size). For smaller particles (<50 μm), relatively smaller bubbles (<80 μm) were found to be more effective for recovery, otherwise, relatively larger bubbles (80–150 μm) proved to be efficient in recovering larger particles (particle size: ∼250 μm). Acidic and neutral pHs were effective in separation as hydrophobic particles were formed. As pH tends toward alkalinity, flocs become more hydrophilic, leading to low recovery from the aqueous solution. In addition, separation efficiency was dependent on flocculant dose as increase in concentration improved flocculation and consequently, yeast recovery. However, above a critical concentration, overdosing occurred and inadvertently, recovery efficiency decreased. The application of chitosan as a bioflocculant and the subsequent application of microflotation for the separation of yeast cells proved effective and promises several advantages over non-bubble based separation techniques that preclude continuous industrial-scale production.  相似文献   

17.
Three soils which had been amended for several years with pig slurry, cattle slurry, and sewage sludge were dry-sieved to obtain microaggregates in the size range of 250–125, 125–50, and <50 μm. With amendments, aggregate size distribution of whole soils was shifted to larger sizes, especially for the most fragile soil, whereas percent content of microaggregates decreased except for the lower size aggregates of the fragile soil. Particle size distribution of microaggregates revealed an increase in percent sand and a reduction of percent silt and clay in the <50 μg size fraction for all soils. These results showed the aggregation effect induced by the organic waste additions. Aggregate stability of microaggregates revealed significant correlation with humic substances content (humic acids alone and humic plus fulvic acids) and non significant with total organic matter substantiating the belief that humic substances are the predominant binding agents in this aggregation range. Molecular weight distribution of humic acids extracted from microaggregates of unamended soils demonstrated that the lower the soil aggregate size distribution, the larger the contribution of the high molecular weight fraction. All microaggregates from amended soils showed a progressive increase of the high molecular weight humic acids with decreasing size, reaching a maximum in the <50 μm fraction. In this aggregate size a parallel enhancement of the aggregate stability was also evident. It is concluded that a close relationship exists between aggregate stability and high molecular weight humic substances. Additions to soils of organic material containing high molecular weight constituents would represent a useful management practice to improve aggregate stability.  相似文献   

18.
Land-use practices surrounding a wetland may be as important for maintaining wildlife populations as the wetland itself. Although imperiled species may appear to be more impacted than ubiquitous species from changes in the landscape surrounding wetlands, studies of common wetland species are useful for conservation because they provide insight into why some species persist despite landscape changes. We therefore investigated the relationship between connectivity, measured as the wetland distance to other wetlands; connectivity quality, implied by wetland distance to roads and forest area within 30, 125, 250, 500 and 1000 m buffer zones around the wetland; and patch size as indicated by wetland size with northern watersnake Nerodia sipedon sipedon abundance. Our results suggest that both upland and wetland characteristics influence the abundance of N. s. sipedon , as wetland size and wetland connectivity to other wetlands were significantly associated with abundance. Abundance was positively correlated with increasing wetland size and wetland connectivity. We were not able to find a significant relationship between abundance and connectivity quality, and wetland distance to road or forest area within 30, 125, 250, 500 and 1000 m buffer zones. We conclude that wetland conservation should focus on wetland complexes as well as individual wetlands. In addition, common wetland species such as the northern watersnake do not appear to be negatively impacted by modifications to nearby terrestrial habitats, such as deforestation and roads, and may benefit from the creation of larger, permanent wetlands.  相似文献   

19.
The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (VIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery. Chitosan flakes were reduced in size using a cryo-milling technique. Milled powders were sieved between 45 and 125 μm aggregate sizes and characterized for particle size and distribution, morphology, and flow properties. Powders were blended in the micro-ball mill without the ball. Lyophilization followed by milling produced irregularly shaped, polydisperse particles with a median primary particle diameter of ≈21 μm and a yield of ≈37% of particles in the 45 to 125 μm particle size range. Flow properties of lactose and trehalose powders after lyophilization followed by milling and sieving were similar. Cryo-milling produced a small yield of particles in the desired size range (<10%). Lyophilization followed by milling and sieving produced particles suitable for nasal delivery with different physicochemical properties as a function of processing conditions and components of the formulation. Further optimization of particle size and morphology is required for these powders to be suitable for clinical evaluation. Published: March 10, 2006  相似文献   

20.
A comparative study on gossypol content of various genetic types of pigment glands of cotton varieties was conducted through an optimized high-performance liquid chromatography (HPLC) on a C18 column (4.6 mm x 250 mm, 5 Μm particle) with methanol-0.5% acetic acid aqueous solution, 90 : 10 (v/v), as mobile phase, at a flow rate of 0.8 ml/min and UV detection at 254 nm. The method was shown to be highly reproducible, with precision [as relative standard deviation (RSD)] and accuracy [as relative mean error (RME)] < 10%, both intra-day and inter-day. Absolute recoveries were > 94%. The results revealed major differences among the different gland varieties or species of cotton, including the special and ordinary glandless and glandedGossypium hirsutum, G. barbadense, and displayed the precious resources of different glands of extraordinary cotton  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号