首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

2.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

3.
采用正交实验法研究了温度、pH、离子强度和溶解性有机质(DOC)对沉积物吸附菲和五氯酚(PCP)能力的影响.结果表明,上覆水温度和pH对个别沉积物的吸附能力有显著影响,其他因素及交互作用对菲和PCP的吸附无显著影响.沉积物对菲的吸附能力随温度升高而降低,对PCP在中温(20℃)时最小.pH对菲的吸附无显著影响,PCP的吸附量随pH升高而降低.DOC升高微弱地降低了菲和PCP的吸附,离子强度升高使PCP的吸附有微弱升高.沉积物对有机污染物的吸附能力主要由沉积物和有机污染物性质决定,受上覆水性质影响较小.  相似文献   

4.
Pan B  Huang P  Wu M  Wang Z  Wang P  Jiao X  Xing B 《Bioresource technology》2012,103(1):367-373
Sediment samples with high organic carbon contents (22.04% and 8.46%) were collected and thermally-treated using a method analogous to biochar production. The obtained thermally-treated sediments (TTSs) showed a much higher degree of carbon capture in comparison to biochar derived from common biomass, indicating potential use of TTSs in soil amendment and carbon sequestration. Their sorption with organic contaminants was also investigated using sulfamethoxazole (SMX) as a model sorbate. SMX sorption increased greatly with pyrolytic temperature. Desorption ratio of the adsorbed SMX in TTSs generally decreased with increased pyrolytic temperature and with decreased solid-phase concentrations. The thermodynamic analysis showed that the higher entropy increase (positive ΔS) was well related with the decreased desorption ratio with increased solid-phase concentration for the original sediments. The fate-controlling effect of contaminants in TTS application for soil amendment should be evaluated combining sorption/desorption and sorption thermodynamic studies.  相似文献   

5.
We assessed the desorption behavior of pyrene, chrysene, phenanthrene, and tri-alkylated (C3) phenanthrene/anthracenes for non-vegetated and recently vegetated (< 2 yrs) fuel-oiled sediments collected from the Indiana Harbor Canal (IHC), Gary, IN. Bulk sediment and humin were analyzed for PAH concentrations, organic matter composition, and PAH desorption behavior. PAH desorption isotherms and kinetics were determined using batch aqueous extractions and a two compartment, first-order kinetic model. Vegetated sediments contained more plant carbon and were more nonpolar and less oxidized than non-vegetated sediments. Desorption kinetics indicated that PAH desorption was primarily controlled by a slow PAH-desorbing fraction (F2) of IHC sediments. However, in vegetated sediments, particularly humin, PAH release from a faster PAH-desorbing fraction (F1) increased as did the rates (k2) of PAH desorption from the dominant slow PAH-desorbing fraction (F2). We propose that vegetation provides aliphatic, nonpolar carbon to IHC sediments that facilitates more rapid PAH desorption from bulk sediment and humin.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAH) are widespread environmental contaminants that can, under proper conditions, be degraded by microorganisms. The responses of a riverine sedimentary microbial community to PAH contamination were examined using an integrated biochemical assay that yielded data on PAH concentration, total microbial biomass, and microbial community structure and were interpreted using perturbation theory and the subsidy-stress gradient. Microbial mineralization of naphthalene, anthracene, fluorene, and phenanthrene was observed 24 h after their addition to all sediments sampled and ranged from 0.9 to 16.3% in ambient sediments and from 14.8 to 35.8% in contaminated sediments. Total microbial biomass, determined by phospholipid phosphate, increased in response to intermediate PAH concentration and decreased at sites with the highest PAH concentration (p < 0.05) during seven out of nine (78%) seasonal sampling periods. The two sampling periods that were not statistically different followed periods of high water and cold temperatures. Phospholipid fatty acid analysis of microbial community structure analysis indicated that increases in the relative abundance of gram-negative aerobes and heterotrophic eukaryotes were responsible, in part, for these observed increases in total microbial biomass. These findings (increased degradation rates, increased biomass at intermediate PAH concentrations, and altered community structure) indicate that a component of the microbial community responded to PAH as a usable input and are consistent with the predictions of perturbation theory and a subsidy-stress gradient.  相似文献   

7.
The effect of arbuscular mycorrhizal fungi (AMF) on the reduction of soil polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and growth of leek (Allium porrum L. cv. Musselburgh) plants was studied under greenhouse conditions. This experiment was a 3 × 2 × 2 × 4 factorial design including three mycorrhizal treatments (non-AMF, Glomus intraradices, and G. versiforme strains), two microorganism statuses (with and without soil bacteria), two PAH chemicals (anthracene and phenanthrene), and four PAH concentrations (three concentrations added and one control). Leek growth was reduced significantly in soils spiked with anthracene or phenanthrene. Inoculation with either Glomus intraradices or G. versiforme not only increased N and P uptake and plant growth, but also enhanced PAH disappearance in soil. After 12 weeks of potcultures, the anthracene and phenanthrene concentrations in soils were decreased as compared to their initial level, 9%–31% versus 43%–88%, respectively. Reductions in concentration were larger for phenanthrene than anthracene. The addition of a soil microorganism (SM) extract in potcultures accelerated the disappearance of PAHs. The decrease of PAHs in soil was mainly attributed to the enhanced nutrient uptake by AMF, leading to improved plant growth, which, in turn, may stimulate soil microbial activity. This study shows the interrelationships between AMF, plants, other SMs, and PAH disappearance in soil. The phytoremediation of soil contaminated with PAHs can be accelerated through inoculation with AMF and other SMs.  相似文献   

8.
This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.  相似文献   

9.
Yeast abundance in the sediments of 13 coastal sites in Massachusetts was quantified, and the potential of yeast isolates to biotransform polycyclic aromatic hydrocarbons (PAHs) was determined. Plate counts of yeasts varied between 10(2) to 10(7) CFU g (dry weight) of sediment-1. The most abundant genera isolated and identified included Candida, Cryptococcus, Rhodotorula, Torulopsis, and Trichosporon. More than 50% of the isolates from heavily contaminated sites transformed phenanthrene, as determined by spray-plate screening. The plate counts of phenanthrene-transforming yeasts correlated significantly to the sediment concentrations of phenanthrene. Transformation of [9-14C]phenanthrene and [12-14C]benz[a]anthracene by individual isolates varied greatly, ranging from 0.15 to 8.15 mumol of PAH g-1 in 120-h incubations. Of the isolated yeasts, Trichosporon penicillatum exhibited the greatest capacity for phenanthrene transformation. The ability to transform PAHs appears to be widespread among yeasts in coastal sediments.  相似文献   

10.
Carbon partitioning and residue formation during microbial degradation of polycyclic aromatic hydrocarbons (PAH) in soil and soil-compost mixtures were examined by using [14C]anthracenes labeled at different positions. In native soil 43.8% of [9-14C]anthracene was mineralized by the autochthonous microflora and 45.4% was transformed into bound residues within 176 days. Addition of compost increased the metabolism (67.2% of the anthracene was mineralized) and decreased the residue formation (20. 7% of the anthracene was transformed). Thus, the higher organic carbon content after compost was added did not increase the level of residue formation. [14C]anthracene labeled at position 1,2,3,4,4a,5a was metabolized more rapidly and resulted in formation of higher levels of residues (28.5%) by the soil-compost mixture than [14C]anthracene radiolabeled at position C-9 (20.7%). Two phases of residue formation were observed in the experiments. In the first phase the original compound was sequestered in the soil, as indicated by its limited extractability. In the second phase metabolites were incorporated into humic substances after microbial degradation of the PAH (biogenic residue formation). PAH metabolites undergo oxidative coupling to phenolic compounds to form nonhydrolyzable humic substance-like macromolecules. We found indications that monomeric educts are coupled by C-C- or either bonds. Hydrolyzable ester bonds or sorption of the parent compounds plays a minor role in residue formation. Moreover, experiments performed with 14CO2 revealed that residues may arise from CO2 in the soil in amounts typical for anthracene biodegradation. The extent of residue formation depends on the metabolic capacity of the soil microflora and the characteristics of the soil. The position of the 14C label is another important factor which controls mineralization and residue formation from metabolized compounds.  相似文献   

11.
The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance liquid chromatography showed that at least 22 PAHs, including all of the most abundant PAH components present in anthracene oil, underwent 70 to 100% disappearance during 27 days of incubation with nutrient nitrogen-limited cultures of this fungus. Because phenanthrene is the most abundant PAH present in anthracene oil, this PAH was selected for further study. In experiments in which [14C]phenanthrene was incubated with cultures of P. chrysosporium containing anthracene oil for 27 days, it was shown that 7.7% of the recovered radiolabeled carbon originally present in [14C]phenanthrene was metabolized to 14CO2 and 25.2% was recovered from the aqueous fraction, while 56.1 and 11.0% were recovered from the methylene chloride and particulate fractions, respectively. High-performance liquid chromatography of the 14C-labeled material present in the methylene chloride fraction revealed that most (91.9%) of this material was composed of polar metabolites of [14C]phenanthrene. These results suggest that this microorganism may be useful for the decontamination of sites in the environment contaminated with PAHs.  相似文献   

12.
The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance liquid chromatography showed that at least 22 PAHs, including all of the most abundant PAH components present in anthracene oil, underwent 70 to 100% disappearance during 27 days of incubation with nutrient nitrogen-limited cultures of this fungus. Because phenanthrene is the most abundant PAH present in anthracene oil, this PAH was selected for further study. In experiments in which [14C]phenanthrene was incubated with cultures of P. chrysosporium containing anthracene oil for 27 days, it was shown that 7.7% of the recovered radiolabeled carbon originally present in [14C]phenanthrene was metabolized to 14CO2 and 25.2% was recovered from the aqueous fraction, while 56.1 and 11.0% were recovered from the methylene chloride and particulate fractions, respectively. High-performance liquid chromatography of the 14C-labeled material present in the methylene chloride fraction revealed that most (91.9%) of this material was composed of polar metabolites of [14C]phenanthrene. These results suggest that this microorganism may be useful for the decontamination of sites in the environment contaminated with PAHs.  相似文献   

13.
The effect of rapeseed oil (0, 0.1 and 1% w/w) on the degradation of polycyclic aromatic hydrocarbons (PAH) by Rhodococcus wratislaviensis was studied in soils artificially contaminated with phenanthrene, anthracene, pyrene and benzo(a)pyrene (50 mg kg−1 each), during 49 days at 30 °C. Without or with 0.1% of rapeseed oil, R. wratislaviensis degraded >90% of phenanthrene and anthracene in 14 days and mineralised approx. 23% of 14C-phenanthrene. The native microflora degraded pyrene (90% degradation; 75% mineralisation) and benzo(a)pyrene (30% degradation, no mineralisation). With 1% rapeseed oil, R. wratislaviensis degraded only 66% of the phenanthrene and mineralised 12.4%, and had no effect on other PAH, while degradation by the native microflora was inhibited. On the other hand, the addition of 1% oil promoted degradation of benzo(a)pyrene (75%) and anthracene (90%) and anthraquinone was produced at high concentrations and accumulated. Two distinct processes gave degradation of PAH, one biological and one abiotic. Biological processes mainly degraded phenanthrene and pyrene, either by R. wratislaviensis or by the indigenous microflora. Benzo(a)pyrene was degraded mainly by an abiotic process in the presence of 1% rapeseed oil. Anthracene was degraded by a combination of both processes.PAH are often found in contaminated soils and there is the need of developing techniques that can be applied in the remediation of these sites, where PAH, specially those with high molecular weight, pose health and environmental risks. There is a continuous search for efficient microorganisms able to degrade these pollutants and for methods to enhance their degradation and bioavailability, e.g. by the use of vegetable oils. This paper presents a novel process for the degradation of PAH by a combined biological/abiotic system.  相似文献   

14.
The objectives of this work were to isolate the microorganisms responsible for a previously observed degradation of polycyclic aromatic hydrocarbons (PAH) in soil and to test a method for cleaning a PAH-contaminated soil. An efficient PAH degrader was isolated from an agricultural soil and designated as Mycobacterium LP1. In liquid culture, it degraded phenanthrene (58%), pyrene (24%), anthracene (21%) and benzo(a)pyrene (10%) present in mixture (initial concentration 50 μg ml−1 each) and phenanthrene (92%) and pyrene (94%) as sole carbon sources after 14 days of incubation at 30°C. In soil, Mycobacterium LP1 mineralised 14C-phenanthrene (45%) and 14C-pyrene (65%) after 10 days. The good ability of this Mycobacterium was combined with the benzo(a)pyrene oxidation effect obtained by 1% w/w rapeseed oil in a sequential treatment of a PAH-spiked soil (total PAH concentration 200 mg kg−1). The first step was incubation with the bacterium for 12 days and the second step was the addition of the rapeseed oil after this time and a further incubation of 22 days. Phenanthrene (99%), pyrene (95%) and anthracene (99%) were mainly degraded in the first 12 days and a total of 85% of benzo(a)pyrene was transformed during the whole process. The feasibility of the method is discussed.  相似文献   

15.
The availability of phosphorus (P) in lakes is dependent on the sorption characteristics of the underlying sediments. Temperature is a crucial factor affecting the P sorption in sediments. The objective of this study was to evaluate the effect of temperature on sorption of P by sediments from two eutrophic lakes. The study was carried out using short-term batch experiments at 4, 20 and 30 °C. Phosphorus sorption kinetics, isotherms, fractionation and desorption were investigated. The P sorption was dependent on sediment type and temperature (p < 0.001). The Mei sediments showed a higher sorption rate and sorption capacity than Hua sediments. The P sorption kinetics were best described by a pseudo second order model (R2 > 0.97). Activation energies derived from the kinetics rate constant indicated that P sorption onto the two sediments was controlled by a diffusion process. For both sediments, Freundlich model fit the P sorption isotherms well and the calculated apparent sorption heat was 6.37 kJ mol−1 for Mei sediments and 8.67 kJ mol−1 for Hua sediments. This indicated that P sorption onto both sediments was endothermic. Adding P significantly increased the soluble and loosely bound P (S/L-P), aluminum-bound P (Al-P) and iron-bound P (Fe-P) (p < 0.05). The amount of Al-P and Fe-P was markedly higher at 30 °C than at 4 °C (p < 0.05). Subsequent P desorption indicated that adsorbed P was highly labile, in particular for Hua sediment. The degree of P mobility that occurred during sediment sorption was inversely related to the temperature at the time of sorption. A significant relationship (R2 = 0.978) between phosphorus sorption maximum and oxalate-extractable Fe and Al at different temperatures reflects that the amorphous contents of Fe and Al are responsible for the temperature effect on P sorption.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAH; naphthalene, anthracene and phenanthrene) degrading microbial consortium C2PL05 was obtained from a sandy soil chronically exposed to petroleum products, collected from a petrochemical complex in Puertollano (Ciudad Real, Spain). The consortium C2PL05 was highly efficient degrading completely naphthalene, phenanthrene and anthracene in around 18 days of cultivation. The toxicity (Microtox™ method) generated by the PAH and by the intermediate metabolites was reduced to levels close to non-toxic in almost 40 days of cultivation. The identified bacteria from the contaminated soil belonged to γ-proteobacteria and could be include in Enterobacter and Pseudomonas genus. DGGE analysis revealed uncultured Stenotrophomonas ribotypes as a possible PAH degrader in the microbial consortium. The present work shows the potential use of these microorganisms and the total consortium for the bioremediation of PAH polluted areas since the biodegradation of these chemicals takes place along with a significant decrease in toxicity.  相似文献   

17.
Bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil was investigated using a mixed bacterial culture (community five) isolated from an abandoned industrial site. Community five was inoculated into contaminated soil containing a total PAH (two- to five-ring compounds) concentration of approximately 820 mg/kg soil. PAH degradation by the indigenous microbial population was restricted to the lower molecular weight compounds (naphthalene, acenaphthene, fluorene and phenanthrene) even with yeast extract addition: these compounds decreased by 14 to 37%, in soil hydrated to 50% water capacity, following 91 days of incubation at 24°C. Inoculation of community five into this PAH-contaminated soil resulted in significant decreases in the concentration of all PAHs over the incubation period: greater than 86% of naphthalene, acenaphthene, fluorene, and phenanthrene were degraded after 91 days, while anthracene, fluoranthene, and pyrene were degraded to lesser extents (51.7 to 57.6%). A lag period of 48 to 63 days was observed before the onset of benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene removal. However, significant decreases in the concentration of these compounds (32.6, 25.2, and 18.5%, respectively) were observed after 91 days. No significant decrease in the mutagenic potential of organic soil extracts (as measured by the Ames Test) was observed after incubation of the soil with the indigenous microflora; however, the Microtox toxicity of aqueous soil extracts was reduced sevenfold. In contrast, extracts from contaminated soil inoculated with community five underwent a 43% decrease in mutagenic potential and the toxicity was reduced 170-fold after 91 days incubation. These observations suggest that community five could be utilised for the detoxification of PAH-contaminated soil.  相似文献   

18.
The treatment of soils contaminated with organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), by attrition produced large amounts of highly concentrated attrition sludge (PAH – attrition concentrate – PAC). This paper studied the performance of an oxidation process using potassium permanganate (KMnO4) to degrade PAHs that were initially present in attrition concentrates. The influence of operating conditions (temperature, concentration of KMnO4 and reaction time) was studied, and these parameters were optimized using a response surface methodology (RSM). The results showed that the temperature and the reaction time had a significant and positive effect on the degradation of PAHs for the experimental domain studied (temperature between 20 and 60°C and reaction time between 1 and 7 h). The interaction between the temperature and the concentration of KMnO4 significantly influenced the degradation of the PAHs. The temperature and the concentration of KMnO4 were the main parameters that influenced the degradation of both phenanthrene (Phe) and benzo [a] pyrene (BaP). For benzo [a] anthracene (BaA), the temperature was the most influential factor. According to our results, the optimal conditions were defined as [KMnO4] = 0.4 M for 5.5 h at 60°C. These optimal conditions led to degradations of 42.9%, 40.8%, 41.0% and 46.0% of the total PAHs, Phe, BaA and BaP, respectively.  相似文献   

19.
Anthracene, phenanthrene, and pyrene are polycyclic aromatic hydrocarbon (PAHs) that display both mutagenic and carcinogenic properties. They are recalcitrant to microbial degradation in soil and water due to their complex molecular structure and low solubility in water. This study presents the characterization of an efficient PAH (anthracene, phenanthrene, and pyrene)-degrading microbial consortium, isolated from a petrochemical sludge landfarming site. Soil samples collected at the landfarming area were used as inoculum in Warburg flasks containing soil spiked with 250 mg kg-1 of anthracene. The soil sample with the highest production of CO2-C in 176 days was used in liquid mineral medium for further enrichment of anthracene degraders. The microbial consortium degraded 48%, 67%, and 22% of the anthracene, phenanthrene, and pyrene in the mineral medium, respectively, after 30 days of incubation. Six bacteria, identified by 16S rRNA sequencing as Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, two Microbacteriaceae bacteria, and a fungus identified as Fusarium oxysporum were isolated from the enrichment culture. The consortium and its monoculture isolates utilized a variety of hydrocarbons including PAHs (pyrene, anthracene, phenanthrene, and naftalene), monoaromatics hydrocarbons (benzene, ethylbenzene, toluene, and xylene), aliphatic hydrocarbons (1-decene, 1-octene, and hexane), hydrocarbon mixtures (gasoline and diesel oil), intermediary metabolites of PAHs degradation (catechol, gentisic acid, salicylic acid, and dihydroxybenzoic acid) and ethanol for growth. Biosurfactant production by the isolates was assessed by an emulsification index and reduction of the surface tension in the mineral medium. Significant emulsification was observed with the isolates, indicating production of high-molecular-weigh surfactants. The high PAH degradation rates, the wide spectrum of hydrocarbons utilization, and emulsification capacities of the microbial consortium and its member microbes indicate that they can be used for biotreatment and bioaugumentation of soils contaminated with PAHs.  相似文献   

20.
The present study reports the influence of different factors on the sorption of Pb and Cd by Nostoc muscorum. The results showed that extent of Pb and Cd removal by N. muscorum cells increased with increasing biosorbent dose, but exhibited decline in the adsorption capacity. The maximum sorption of Cd (85.2%) and Pb (93.3%) was achieved at 60 and 80 μg/ml concentrations of respective metal, within 30 and 15 min, respectively. The result revealed that optimum biosorption of Pb and Cd occurred at pH 5 and 6, respectively, at 40°C temperature. Presence of binary metals (both Pb and Cd) in a solution showed that the presence of one metal ion resulted into decreased sorption of other metal ion. The presence of Ca and EDTA showed significant decrease in the sorption of Pb and Cd, while other anions and cations did not show significant effect on the biosorption of both the metals. Maximum desorption of Pb and Cd was achieved in the presence of EDTA and HNO3, respectively. Results also showed that the test biosorbent could be repeatedly used up to six biosorption/desorption cycles without significant loss of its initial metal adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号