首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.

Objectives

To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes.

Results

The heterologous expression of the recombinant and codon-adapted human GDP-l-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-l-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3H-GDP-l-fucose with a Vmax of 8 pmol/min mg with a Km of 4 µM. The functional expression of SLC35C1 in GDP-l-fucose overproducing E. coli led to the export of GDP-l-fucose to the culture supernatant.

Conclusions

The export of GDP-l-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.
  相似文献   

2.
Attention-deficit/hyperactivity disorder (ADHD) and Parkinson’s disease (PD) involve pathological changes in brain structures such as the basal ganglia, which are essential for the control of motor and cognitive behavior and impulsivity. The cause of ADHD and PD remains unknown, but there is increasing evidence that both seem to result from a complicated interplay of genetic and environmental factors affecting numerous cellular processes and brain regions. To explore the possibility of common genetic pathways within the respective pathophysiologies, nine ADHD candidate single nucleotide polymorphisms (SNPs) in seven genes were tested for association with PD in 5333 cases and 12,019 healthy controls: one variant, respectively, in the genes coding for synaptosomal-associated protein 25 k (SNAP25), the dopamine (DA) transporter (SLC6A3; DAT1), DA receptor D4 (DRD4), serotonin receptor 1B (HTR1B), tryptophan hydroxylase 2 (TPH2), the norepinephrine transporter SLC6A2 and three SNPs in cadherin 13 (CDH13). Information was extracted from a recent meta-analysis of five genome-wide association studies, in which 7,689,524 SNPs in European samples were successfully imputed. No significant association was observed after correction for multiple testing. Therefore, it is reasonable to conclude that candidate variants implicated in the pathogenesis of ADHD do not play a substantial role in PD.  相似文献   

3.
Serotoninergic system is one of the major brain neurotransmitter systems that is involved in the development of depressive spectrum disorders. Regulatory genes of this system are the principle candidate genes predisposing to unipolar depression. Using PCR-RFLP analysis, we have conducted a study of polymorphic loci of several genes of this system: C1019G of serotonin receptor 1A gene, (HTR1A); A-1438G of serotonin receptor 2A gene, (HTR2A); G861C of serotonin receptor 1B gene, (HTR1B); Stin2VNTR and 5-HTTLPR of serotonin transporter gene (SLC6A4) in patients with unipolar depression from Tatar and Russian population. The results of the study suggest that genotype 10/10 of the SLC6A4 gene as well as genotype G/G and allele G of the HTR2A gene can predispose to increased risk of unipolar depression development in ethnic Russians. In contrast, genotype 12/10 of the SLC6A4 gene is a marker of low risk of the disease in both groups.  相似文献   

4.
A biochip, primer set, and genotyping protocol were developed to simultaneously address 16 single nucleotide polymorphisms in antileukemic drug metabolism genes, including TPMT, ITPA, MTHFR, SLCO1B1, SLC19A1, NR3C1, GRIA1, ASNS, MTRR, and ABCB1. The genotyping procedure included a one-round multiplex polymerase chain reaction (PCR) with simultaneous incorporation of a fluorescent label into the PCR product and subsequent hybridization on a biochip with immobilized probes. The method was used to test 65 DNA samples of leukemia patients. Fluorescence signal intensity ratios in pairs of wildtype and respective mutant sequence probes were analyzed for all polymorphic markers and demonstrated high accuracy of genotyping. The reliability of genotype determination using the biochip was confirmed by direct Sanger sequencing.  相似文献   

5.
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in females, and is associated with altered metabolic processes in particular insulin resistance and diabetes mellitus. PCOS shares with type-2 diabetes (T2D) a number of features, including beta cell dysfunction, impaired glucose tolerance and dyslipidaemia. Recently, genomewide association studies (GWAS) have reported a number of genes with reproducible associations and susceptibilities to T2D. To address this, we examined the association between the T2D GWAS candidate genes (CDKAL1, CDKN2B, COL8A1, HHEX, IGF2BP2, KCNJ1, KCNQ1 and SLC30A8) and PCOS in Saudi women. A case–control study, includes 162 cases and 162 controls was enrolled. Genotyping was carried out by the allelic discrimination method. Our results showed that the variants including rs792837 of COL8A1, rs61873498 of KCNQ1 and rs13266634 of SLC30A8 genes to be significantly more frequent in PCOS patients than in controls. Our results suggest that COL8A1, KCNQ1 and SLC30A8, which are previously identified through GWAS as T2D-associated genes, are associated with PCOS.  相似文献   

6.
Imprinted genes are characterized by monoallelic expression that is dependent on parental origin. Comparative analysis of imprinted genes between species is a powerful tool for understanding the biological significance of genomic imprinting. The slc38a4 gene encodes a neutral amino acid transporter and is identified as imprinted in mice. In this study, the imprinting status of SLC38A4 was assessed in bovine adult tissues and placenta using a polymorphism-based approach. Results indicate that SLC38A4 is not imprinted in eight adult bovine tissues including heart, liver, spleen, lung, kidney, muscle, fat, and brain. It was interesting to note that SLC38A4 showed polymorphic status in five heterogeneous placentas, with three exhibiting paternal monoallelic expression and two exhibiting biallelic expression. Monoallelic expression of imprinted genes is generally associated with allele-specific differentially methylation regions (DMRs) of CpG islands (CGIs)-encompassed promoter; therefore, the DNA methylation statuses of three CGIs in the SLC38A4 promoter and exon 1 region were tested in three placentas (two exhibiting paternal monoallelic and one showing biallelic expression of SLC38A4) and their corresponding paternal sperms. Unexpectedly, extreme hypomethylation (<?3%) of the DNA was observed in all the three detected placentas and their corresponding paternal sperms. The absence of DMR in bovine SLC38A4 promoter region implied that DNA methylation of these three CGIs does not directly or indirectly affect the polymorphic imprinting of SLC38A4 in bovine placenta. This suggested other epigenetic features other than DNA methylation are needed in regulating the imprinting of bovine SLC38A4, which is different from that of mouse with respect to a DMR existence at the mouse’s slc38a4 promoter region. Although further work is needed, this first characterization of polymorphic imprinting status of SLC38A4 in cattle placenta provides valuable information on investigating the genomic imprinting phenomenon itself.  相似文献   

7.
8.
The plant SWEET family is a sugar transporter family that plays a significant role in plant development. Here, seven loquat SWEET family members were identified by RNA-seq. These were designated as EjSWEET1, EjSWEET2a, EjSWEET2b, EjSWEET2c, EjSWEET4, EjSWEET15, and EjSWEET17. Phylogenetic and predictive functional annotation analyses suggest that the loquat SWEETs are classified as having sucrose, glucose and fructose transportation features. The in vivo responses of loquat SWEETs to exogenous sugar or NaCl was investigated by applying high concentrations of sugar or salt to 7-month-old loquat seedlings cultured in a nutrient medium. The results showed that most loquat SWEET genes can respond to exogenous applications of sucrose, glucose, fructose and salt. The response of EjSWEET1 to exogenous fructose was faster than the others, indicating that EjSWEET1 is more sensitive to exogenous fructose compared with other loquat SWEETs. EjSWEET15 can be induced by sucrose, but is suppressed by glucose. This indicates its possible role in sucrose transporting. The response of loquat SWEETs to NaCl showed broadly similar patterns compared to sugars. However, after a longer time of NaCl treatment, most loquat SWEETs are upregulated, especially EjSWEET15. This indicates its long-term response to high salinity.  相似文献   

9.
N-glycosylation is an important feature of therapeutic and other industrially relevant proteins, and engineering of the N-glycosylation pathway provides opportunities for developing alternative, non-mammalian glycoprotein expression systems. Among yeasts, Saccharomyces cerevisiae is the most established host organism used in therapeutic protein production and therefore an interesting host for glycoengineering. In this work, we present further improvements in the humanization of the N-glycans in a recently developed S. cerevisiae strain. In this strain, a tailored trimannosyl lipid-linked oligosaccharide is formed and transferred to the protein, followed by complex-type glycan formation by Golgi apparatus-targeted human N-acetylglucosamine transferases. We improved the glycan pattern of the glycoengineered strain both in terms of glycoform homogeneity and the efficiency of complex-type glycosylation. Most of the interfering structures present in the glycoengineered strain were eliminated by deletion of the MNN1 gene. The relative abundance of the complex-type target glycan was increased by the expression of a UDP-N-acetylglucosamine transporter from Kluyveromyces lactis, indicating that the import of UDP-N-acetylglucosamine into the Golgi apparatus is a limiting factor for efficient complex-type N-glycosylation in S. cerevisiae. By a combination of the MNN1 deletion and the expression of a UDP-N-acetylglucosamine transporter, a strain forming complex-type glycans with a significantly improved homogeneity was obtained. Our results represent a further step towards obtaining humanized glycoproteins with a high homogeneity in S. cerevisiae.  相似文献   

10.
Idiopathic infantile hypercalcemia (IIH) is a mineral metabolism disorder characterized by severe hypercalcemia, failure to thrive, vomiting, dehydration, and nephrocalcinosis. The periodical increase in incidence of IIH, which occurred in the twentieth century in the United Kingdom, Poland, and West Germany, turned out to be a side effect of rickets over-prophylaxis. It was recently discovered that the condition is linked to two genes, CYP24A1 and SLC34A1. The aim of the study was to search for pathogenic variants of the genes in adult persons who were shortlisted in infancy as IIH caused by “hypersensitivity to vit. D”. All persons were found to carry mutations in CYP24A1 or SLC34A1, nine and two persons respectively. The changes were biallelic, with one exception. Incidence of IIH in Polish population estimated on the basis of allele frequency of recurrent p.R396W CYP24A1 variant, is 1:32,465 births. It indicates that at least a thousand homozygotes and compound heterozygotes with risk of IIH live in the country. Differences in mechanism of developing hypercalcemia indicate that its prevention may vary in both IIH defects. Theoretically, vit. D restriction is a first indication for CYP24A1 defect (which disturbs 1,25(OH)2D degradation) and phosphate supplementation for SLC34A1 defect (which impairs renal phosphate transport). In conclusion, we suggest that molecular testing for CYP24A1 and SLC34A1 mutations should be performed in each case of idiopathic hypercalcemia/hypercalciuria, both in children and adults, to determine the proper way for acute treatment and complications prevention.  相似文献   

11.
Temporal lobe epilepsy (TLE) is the most common epilepsy subtype with complex genetic structure. A recent study in four populations (Ireland, UK, Australia and Finland) reported an allelic association between betaine/GABA transporter-1 (BGT-1 or SLC6A12) and mesial temporal lobe epilepsy with hippocampal sclerosis. To demonstrate the association between SLC6A12 gene polymorphisms and TLE, TaqMan method was used to genotype five single-nucleotide polymorphisms of SLC6A12 gene in 358 TLE patients and 596 nonepileptic control subjects of Chinese Han origin. Real-time PCR was used to detect the effects of variations on gene expression associated with TLE. Though, the single-marker analysis did not demonstrate allelic association with TLE, rs542736–rs557881 interaction showed significant association. The SLC6A12 expression levels in peripheral blood mononuclear cells were significantly higher in TLE patients than in control subjects and were correlated to rs542736 G–rs557881 A haplotypes. Our preliminary results suggested combined effect of two common polymorphisms on SLC6A12 gene may be associated with TLE, but the precise mechanism needs further investigation.  相似文献   

12.
Hereditary spherocytosis(HS), the most common cause of congenital hemolytic anemia, is caused by deficiency of the erythrocyte membrane proteins. Five causative genes(ANK1, SPTB, SPTA1, SLC4 A1, and EPB42) have been identified. To date,molecular genetic studies have been performed in different populations, including the American, European, Brazilian, Japanese and Korean populations, whereas only a few studies have been described in the Chinese population. Here, by reanalysis of the exome data, we revealed causative mutations and established a definitive diagnosis of HS in all 38 Chinese families. We found 34 novel mutations and four reported mutations in three known HS-causing genes—17 in ANK1, 17 in SPTB and four in SLC4 A1,suggesting that ANK1 and SPTB are the major genes in Chinese patients with HS. All of the ANK1 or SPTB mutations, scattered throughout the entire genes, are non-recurrent; and most of them are null mutations, which might cause HS via a haploinsufficiency mechanism. De novo mutations in ANK1 or SPTB often occur with an unexpected high frequency(87.5% and64.2%, respectively). Our study updates our knowledge about the genetic profile of HS in Chinese and shows that family-based,especially parent-offspring trio, sequencing analysis can help to increase the diagnostic power and improve diagnostic efficiency.  相似文献   

13.
In recent years, much attention has been paid by the scientific community to phenolic compounds as active biomolecules naturally present in foods. Pterostilbene is a resveratrol dimethylether derivative which shows higher bioavailability. The aim of the present study was to analyze the effect of pterostilbene on brown adipose tissue thermogenic markers in a model of genetic obesity, which shows reduced thermogenesis. The experiment was conducted with 30 Zucker (fa/fa) rats that were distributed in three experimental groups: control and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of uncoupling protein 1 (Ucp1), peroxisome proliferator-activated receptor γ co-activator 1 α (Pgc-1α), carnitine palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor α (Pparα), nuclear respiratory factor 1 (Nfr1), and cyclooxygenase-2 (Cox-2); protein expression of PPARα, PGC-1α, p38 mitogen-activated protein kinase (p38 MAPK), UCP1 and glucose transporter (GLUT4); and enzyme activity of CPT 1b and citrate synthase (CS) were assessed in interscapular brown adipose tissue. With the exception of Pgc-1α expression, all these parameters were significantly increased by pterostilbene administration. These results show for the first time that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the antiobesity properties of these compound needs further research.  相似文献   

14.

Background

The solute carrier family 30 member 8 gene (SLC30A8) encodes a zinc transporter in the pancreatic beta cells and the major C-allele of a missense variant (rs13266634; C/T; R325W) in SLC30A8 is associated with an increased risk of type 2 diabetes (T2D). We hypothesized that the association between zinc intake and T2D may be modified by the SLC30A8 genotype.

Results

We carried out a prospective study among subjects with no history cardio-metabolic diseases in the Malmö Diet and Cancer Study cohort (N = 26,132, 38% men; 86% with genotype data). Zinc intake was assessed using a diet questionnaire and food record. During a median follow-up of 19 years, 3676 T2D cases occurred. A BMI-stratified Cox proportional hazards regression model with attained age as the time scale was used to model the association between total and dietary zinc intake, zinc supplement use, zinc to iron ratio, and risk of T2D adjusting for putative confounding factors.The median total zinc intake was 11.4 mg/day, and the median dietary zinc intake was 10.7 mg/day. Zinc supplement users (17%) had a median total zinc intake of 22.4 mg/day. Dietary zinc intake was associated with increased risk of T2D (P trend < 0.0001). In contrast, we observed a lower risk of T2D among zinc supplement users (HR = 0.79, 95% CI 0.70–0.89). The SLC30A8 CC genotype was associated with a higher risk of T2D (HR = 1.16, 95% CI 1.07–1.24), and the effect was stronger among subjects with higher BMI (P interaction = 0.007). We observed no significant modification of the zinc-T2D associations by SLC30A8 genotype. However, a three-way interaction between SLC30A8 genotype, BMI, and zinc to iron ratio was observed (P interaction = 0.007). A high zinc to iron ratio conferred a protective associated effect on T2D risk among obese subjects, and the effect was significantly more pronounced among T-allele carriers.

Conclusions

Zinc supplementation and a high zinc to iron intake ratio may lower the risk of T2D, but these associations could be modified by obesity and the SLC30A8 genotype. The findings implicate that when considering zinc supplementation for T2D prevention, both obesity status and SLC30A8 genotype may need to be accounted for.
  相似文献   

15.
The aim of this study was to identify single nucleotide polymorphism (SNP) markers genetically linked to root elongation rate (RER) in sugar beet (Beta vulgaris L.). A population of 244 F3 individuals, obtained from the cross between lines L01 (a low RER) and L18 (a high RER), was phenotyped by measuring RER of 11-d-old seedlings grown in a hydroponic culture. Two DNA bulks of 50 F3 individuals with extreme phenotypes were used for bulk segregant analysis by restriction-associated DNA sequencing. A total of 20 376 SNPs were identified. Single nucleotide polymorphisms were filtered to reduce the number of the false positive and mapped on candidate chromosomal regions of the B. vulgaris reference genome. One of the total of SNPs selected, SNP10139, was strongly linked to RER (P < 0.01). The pattern of association between the SNP10139 genotype and RER was also evaluated on a breeding line panel comprising 40 low and 40 high RER individuals with different allele frequencies between groups (P < 0.01). The SNP10139 sequence was mapped on the B. vulgaris peptide transporter (PTR) gene, a carrier that influences root elongation in Arabidopsis thaliana. Our results suggest that SNP10139 influence RER in sugar beet, and sequence information can be used in marker-assisted selection programs.  相似文献   

16.
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and twodimensional 1H and 13C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-D-Glcp-(1→6)-α-D-GlcpNAc(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→. The →4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.  相似文献   

17.
Sugars are key constituents that affect quality of grape berries, and consequently the grape metabolic profile relevant to wine’s industry. However, enzymes and transporter genes expression involved in sugar transport at different phenological stages are scarcely studied. In addition, little is known about the role of the plant hormones ABA and Gibberellin (GA3) as endogenous regulators, over the expression pattern of the sugars transporters genes in grapevine. The aim of this study was to analyze the expression pattern of the most relevant sugar transporters and invertases in leaves and berries of grapevine plants cv. Malbec during berry ripening stages and its shift after ABA and GA3 sprays. In leaves, VvHT1 was the sugar transporter highly expressed, whereas VvHT6 was the most abundant in berries throughout berry ripening. Moreover, VvSUC12 and VvSUC27 were expressed at veraison greater in leaves than in berries, suggesting an active phloem loading at the onset of ripening. Applications of ABA and GA3 enhanced the expression of VvSUC12 and VvSUC27 in pre-veraison leaves. Furthermore, hormones increased the expression of VvHT2, VvHT3 and VvHT6 in berries at different stages of ripening favoring sugar unloading from phloem. In conclusion, ABA and GA3 are involved in the long-distance sugar transport from leaves to berries in Vitis vinifera L. cv. Malbec, and their exogenous application could be a suitable strategy to improve the process.  相似文献   

18.
Pendred syndrome is an autosomal recessive inherited disorder characterized by a combination of sensorineural hearing impairment and euthyroid goiter; its clinical manifestation in children is hardly distinguishable from nonsyndromic hearing loss. Pendred syndrome is one of the most frequent types of syndromic hearing loss. Hearing impairment is accompanied by abnormal development of the bony labyrinth—enlarged vestibular aqueduct (EVA) and occasionally combined with Mondini dysplasia. Mutations in the SLC26A4 gene, which encodes the pendrin protein, are responsible for both Pendred syndrome and for allelic disorder (nonsyndromic enlarged vestibular aqueduct). The present study for the first time conducted molecular genetic analysis in 20 Russian patients with Pendred syndrome, EVA and/or Mondini dysplasia. As a result, six pathogenic mutations in the SLC26A4 gene were revealed in four patients. The mutation c.222G>T (p.Trp74Cys) was detected for the first time. Mutations were found in patients with Pendred syndrome and nonsyndromic EVA with or without Mondini dysplasia. Mutations were not detected in patients with isolated Mondini dysplasia. One proband with clinical diagnosis Pendred syndrome was homozygous for the c.35delG mutation in the GJB2 gene. The absence of frequent mutations, including well-known ones or “hot” exons in the SLC26A4 gene, was reported. Therefore, the optimal method to search for mutations in the SLC26A4 gene in Russian patients is Sanger sequencing of all exons and exon-intron boundaries in the SLC26A4 gene.  相似文献   

19.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

20.
Cereal grains offer great potential as a storage system for production of highly valuable proteins using biotechnological approaches, but such applications require tight temporal and spatial control of transgene expression. Towards this aim, we have undertaken a detailed analysis of α-kafirin (α-kaf) promoter and α-kaf signal peptide (sp) in transgenic sorghum plants, using green fluorescent protein gene (gfp) as a reporter. Constructs containing either the α-kaf promoter or the constitutive maize ubiquitin-1 (ubi) promoter driving either gfp or sp-gfp translational fusion were introduced into Sorghum bicolor inbred line Tx430 by particle bombardment. We show for the first time that the α-kaf promoter directs endosperm-specific transgene expression, with activity first detected at 10 days post-anthesis (dpa), peaking at 20 dpa, and remaining active through to physiological maturity. Furthermore, we demonstrate for the first time that the α-kafirin sp is sufficient to direct foreign protein to protein bodies in the endosperm. The evidence is also provided for possible mis-targeting by α-kaf sp in vegetative tissues of transgenic lines with ubi-sp-gfp, resulting in loss of reporter gene translational activity that no GFP signal was observed. These results demonstrate that α-kaf promoter and α-kaf sp are well suited for seed bioengineering to produce recombinant proteins in sorghum endosperm or deposit foreign proteins into sorghum protein bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号