首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Restoration of a weathered crude oil contaminated site undergoing phytoremediation was evaluated using nematodes as bioindicators. Samples were collected twice per year equating to spring and fall/winter. Mean annual total abundances ranged from 18–130 in the non-fertilized non-vegetated control (CTR) to 69–728 in tall fescue-ryegrass (FES) to 147–749 (100 g?1) in the fertilized bermudagrass-fescue (BER) treatment. Proportions of plant-parasitic (PP) and free-living (FL) nematodes were significantly impacted by treatment, but not year, with PP nematodes accounting for 27, 59, and 68% of CTR, FES, and BER communities, respectively. There was no significant year by season by treatment or treatment by year effect for total, PP, or FL nematode abundances. Diversity did not increase over time. The BER and FES treatments had more mature communities as indicated by higher plant-parasitic index (PPI) values. Phytoremediation accelerates petroleum degradation and alters the soil habitat which is reflected in the nematode community. However, low numbers and inconsistent presence of persister strategist omnivores and predators, and the lack in improvement over time in treatment effects for total and PP nematode abundances, PP and FL proportions, or PPI indicate the system is being rehabilitated but has not been restored after 69 months of phytoremediation.  相似文献   

2.
The search for cheaper and environmentally friendly options of enhancing petroleum hydrocarbon degradation has continued to elicit research interest. One of such options is the use of animal manure as biostimulating agents. A combination of treatments consisting of the application of poultry manure, piggery manure, goat manure, and chemical fertilizer was evaluated in situ during a period of 4 weeks of remediation. Each treatment contained petroleum hydrocarbon mixture (kerosene, diesel oil, and gasoline mixtures) (10% w/w) in soil as a sole source of carbon and energy. After 4 weeks of remediation, the results showed that poultry manure, piggery manure, goat manure, and NPK (nitrogen, phosphorous, and potash [potassium]) fertilizer exhibited 73%, 63%, 50%, and 39% total petroleum hydrocarbon degradation, respectively. Thus, all the biostimulating treatment strategies showed the ability to enhance petroleum hydrocarbon microbial degradation. However, poultry manure, piggery manure, and goat manure treatments showed greater petroleum hydrocarbon reductions than NPK fertilizer treatment. A first-order kinetic equation was fitted to the biodegradation data and the specific degradation rate constant (k) values obtained showed that the order of effectiveness of these biostimulating strategies in the cleanup of soil contaminated with petroleum hydrocarbon mixtures (mixture of kerosene, diesel oil, and gasoline) is NPK fertilizer < goat manure < piggery manure < poultry manure. Therefore, this present work has indicated that the application of poultry manure, piggery manure, goat manure, and chemical fertilizer could enhance petroleum hydrocarbon degradation with poultry manure, showing a greater effectiveness and thus could be one of the severally sought environmentally friendly ways of remediating natural ecosystem contaminated with crude oil.  相似文献   

3.
In less developed countries, the prevalence of soil contaminated with used lubricating oil is high and the situation worsens with the economic advancement. The contamination has been shown to adversely affect the environment and human health. To mitigate, bioremediation could be adopted to tackle the problem of hydrocarbon-contaminated soil. Thus, this experimental research carried out the bioremediation using chicken manure in soils contaminated with 5%, 10% and 20% w/w used lubricating oil for a 42-day composting period. To compare, this research also experimented with the 5%, 10% and 20% oil-contaminated soils untreated with chicken manure. The results showed that the highest total petroleum hydrocarbons (TPHs) reduction efficiency of >60% was achieved in the 5% oil-contaminated compost remediated with chicken manure. The highest biodegradation rate of lubricating oil of 0.023–0.0025 day?1 as measured by the first-order kinetics could also be achieved under the 5% oil contamination condition with the application of chicken manure. The findings highlight the prospect of chicken manure as a proper nutrient for enhanced remediation of hydrocarbon-contaminated soils, particularly of low contamination concentrations.  相似文献   

4.
Contamination of soil by petroleum hydrocarbons is becoming prevalent in Malaysia. Infiltration of soil contamination into groundwater poses a great threat to the ecosystem and human health. Bioremediation can occur naturally or can be enhanced with supplementation of microorganisms and fertilizers. However, fertilizers are expensive and therefore alternative nutrient-rich biomaterials are required. In this study, two organic wastes from agricultural industry (i.e., sugarcane bagasse and oil palm empty fruit bunch) were investigated for possible enhanced bioremediation of soil contaminated with Tapis crude oil. Two bacterial strains isolated and characterized previously (i.e., Pseudomonas aeruginosa UKMP-14T and Acinetobacter baumannii UKMP-12T) were used in this study. Sugarcane bagasse (5% and 15%, w/w) and oil palm empty fruit bunch (20%, w/w) were mixed with soil (500 g) spiked with Tapis crude oil (3%, v/w). The treated soils as well as controls were incubated for 20 days under controlled conditions. Sampling was carried out every four days to measure the number of bacterial colonies (CFU/g) and to determine the percentage of oil degradation by gas chromatography. The two biostimulating agents were able to maintain the soil moisture holding capacity, pH, and temperature at 38-40% volumetric moisture content (VMC), 7.0, and 29–30°C; respectively. The growth of bacteria consortium after 20 days in the treatment with sugarcane bagasse and oil palm empty fruit bunch had increased to 10.3 CFU/g and 9.5 CFU/g, respectively. The percentage of hydrocarbon degradation was higher in the soil amended with sugarcane bagasse (100%) when compared to that of oil palm empty fruit bunch (97%) after 20 days. Our results demonstrated the potential of sugarcane bagasse and oil palm empty fruit bunch as good substrates for enhanced bioremediation of soil contaminated with petroleum crude oil.  相似文献   

5.
This laboratory study measured growth of one plant species, Lycopersicon esculentum Big Girl (tomato), that is sensitive to the presence of soil contamination, in Kuwait soil amended with crude-oil-contaminated soil. Germinated tomato seeds were placed in containers with soil containing 0, 0.12, 0.24, 0.36, 0.48, 0.60, 1.2, and 2.4% crude oil and were grown in an indoor growth chamber. Plants grew in Kuwait soil containing up to 0.36% crude oil; however, growth and fruit production were compromised at crude oil concentrations greater than 0.12% when compared with control plants. Plants did not grow in Kuwait soil amended with 0.48% crude oil or higher.  相似文献   

6.
Field-scale experiments on bioremediation of soil heavily contaminated with crude oil were undertaken on the territory of the Kokuyskoye oil field (Perm region, West Urals, Russia) owned by the LUKOIL Company. The pollution consisted of the contents of a oil waste storage pit, which mostly received soils contaminated after accidental oil spills and also the solid n-alkane (paraffin) wastes removed from the surface of drilling equipment. Laboratory analyses of soil samples indicated contamination levels up to 200?g/kg of total recoverable petroleum hydrocarbons (TRPH). Average oil composition consisted of 64% aliphatics, 25% aromatics, 8% heterocyclics, and 3% of tars/asphaltenes. Ex situ bioremediation techniques involved the successive treatment of contaminated soil using a bioslurry reactor and land farming cells. An oleophilic biofertilizer based on Rhodococcus surfactant complexes was used in both treatment systems. An aerobic slurry bioreactor was designed, and the biofertilizer applied weekly. Slurry-phase biotreatment of the contaminated soil resulted in an 88% reduction in oil concentration after 2 months. The resulting reactor product, containing approximately 25?g/kg of TRPH, was then loaded into land farming cells for further decontamination. To enhance bioremediation, different treatments (e.g., soil tilling, bulking with woodchips, watering, and biofertilizer addition) were used. The rates of oil biodegradation were 300 to 600?ppm/day. As a result, contamination levels dropped to 1.0 to 1.5?g/kg of TRPH after 5 to 7 weeks. Tertiary soil management involved phytoremediation where land farming cells were seeded with a mixture of three species of perennial grass. The effect of phytoremediation on the residual decontamination and rehabilitation of soil fertility is being evaluated.  相似文献   

7.
Due to the unique properties of subcritical water (marked change in water's dielectric constant and viscosity), the extraction by subcritical water offers a great opportunity to remediate soil contaminated with organic pollutants as an alternative and green remediation method. In this study, subcritical water extraction is proposed as an efficient remediation technique for the Gulf War oil spill contaminated soil. The subcritical water extraction experiment was carried out in a lab-scale continuous flow apparatus. The three major operating factors, temperature, time and water flow rate, were evaluated in terms of optimum removal efficiency. The results show that crude oil removal depended largely on water temperature, whereas an extraction run time higher than 1 h and a water flow rate higher than 1.5 mL/min marginally or negatively affected removal efficiency. During subcritical water treatment at 300°C for 1 h at a flow rate of 1.5 mL/min, removal efficiency was almost 95%. Under these operating conditions, the subcritical water treatment demonstrated a similar removal efficiency to those of organic solvents like acetone. In contrast, the efficiency of oil recovery decreased with an increase in extraction temperature, due to degradation by a water self-oxidizing agent. Several degradation products identified in the treated soil and in the effluent sample (which initially were absent in the contaminated soil) were oxygen-containing aromatic compounds, confirming the oxidation-degradation.  相似文献   

8.
Pseudomonas sp. (L1), P. diminuta(L2) were among eight bacterial strains isolated from vegetable grease and oil-contaminated industrial wastewater, four of which only were found to have the ability to degrade oil and grease. They were identified and investigated for oil and grease degradation either individually or in combinations in previous unpublished work by the authors. Since the combination M1 (Pseudomonas sp. andP. diminuta) produced the highest degradative activity, it was used in the present study in a biofilm sand filter system for vegetable oil and grease removal. This system was tested either as one unit or two units in sequence where different flow rates (30, 50, 100 ml/h) were applied compared to a control unit(s). Results showed that both biofilm systems reduced oily wastewater, even in cases of high degree of pollution (fat, oil & grease (FOG), 7535 ppm; biochemical oxygen demand (BOD5), 525 ppm; chemical oxygen demand (COD), 1660 ppm). Results also showed a removal of FOG with efficiency at 100%; BOD5 at 95.9% and COD at 96%, at 50 ml/h flow rate using one unit of biofilm system. On using two units in sequence, a complete removal of FOG, BOD5 and COD with efficiency 100%, at flow rate 100 ml/h was achieved. In conclusion, the previous biofilm results indicated the efficiency of such a system in treating oily polluted wastewater (vegetable oil origin) on the basis of bacterial isolates being used, the optimum flow rate, and the number of biofilm units used in sequence to obtain the highest removal capacity of such a system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The efficacy of ten commercial bioremediation products in enhancing the biodegradation of crude oil was investigated in the laboratory at 10 or 30a°C for 90 d with and without supplemental nitrogen and phosphorus. Oil was added to a 1-cm layer of water covering sediments from a salt marsh. The products did not increase the numbers of hydrocarbon-degrading microorganisms in water and sediments but did increase heterotrophic populations at 21 d. Some bioremediation products more than doubled the quantity of hydrocarbons degraded in 45 d at 10°C. At 30°C, no product increased degradation compared to the fertilized control in which 70% of the added hydrocarbons were degraded. Two products increased the percentage of hydrocarbons degraded from 42% to approximately 65% in 45 d at 30°C when supplemental fertilizer was not provided. The hydrocarbon concentration was not significantly reduced between 45 and 90 d for most product treatments at either temperature. At 10°C, products seemed to have the greatest potential for enhancing oil bioremediation compared to the control.  相似文献   

10.
Evaluation of rice husk (RH) as bulking agent in bioremediation of automobile gas oil (AGO) hydrocarbon polluted agricultural soil using renewal by enhanced natural attenuation (RENA) as control was the subject of the present investigation. The effect of different parameters such as total petroleum hydrocarbon (TPH), dehydrogenase activity (DHA), optical density and pH on bioremediation performance were evaluated. The studied parameters such as microbial dynamics, percentage degradation and DHA were found to be higher in RH-amended system and differed significantly with control at P < 0.05. RH resulted in high removal efficiency of 97.85 ± 0.93% under a two-month incubation period, while RENA had lesser removal efficiency of 53.15 ± 3.81%. Overall hydrocarbon biodegradation proceeded very slowly in the RENA particularly from week 0 to 4. Experimental data perfectly fitted into the first-order kinetic and generated high r2 values (0.945), first-order degradation constant (0.47 day?1), and shorter degradation half-life (1.50 d)—t1/2 = Ln2/K and Ln2 numerically equals to 0.693 and hence written as 0.693/K. Micrococcus luteus and Rhizopus arrhizus were isolated in the present study, which displayed extreme AGO hydrocarbon biodegradative abilities. The use of RH in hydrocarbon-polluted soil significantly increased biodegradation rate and resulted in effective AGO cleanup within 2 months period. Therefore, RH provides an alternative source of bioremediation material in field application for abundant petroleum hydrocarbon soil pollution.  相似文献   

11.
原油微生物群落构成多样性及降解菌DYL-1降解原油的研究   总被引:1,自引:0,他引:1  
为分离得到高效原油降解菌,直接向原油中加入营养物刺激,培养一段时间后原油乳化降解,傅里叶红外光谱显示,2957cm-1、723cm-1处吸收峰消失;2855cm-1、1377cm-1处吸收峰减弱;880cm-1以及800cm-1吸收峰几乎消失,表明原油发生降解,效果明显。同时分离得到一株降解菌,经分子鉴定为芽孢杆菌属(Bacillus sp.),红外光谱法和紫外吸收法分析表明其具有较强的降解原油烃的能力。根据传统分子生物学的方法,构建原油菌16S rDNA克隆文库,限制性酶切片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)分析了原油中的细菌多样性。结果表明此方法有效地评估了原油中的细菌群落和多样性。  相似文献   

12.
Microbial enhanced oil recovery (Meor) is an incontestably efficient alternative to improve oil recovery, especially in mature fields and in oil reservoirs with high paraffinic content. This is the case for most oil fields in the Recôncavo basin of Bahia, Brazil. Given the diverse conditions of most oil fields, an approach to apply Meor technology should consider primarily: (i) microbiological studies to select the appropriate microorganisms and (ii) mobilization of oil in laboratory experiments before oil field application. A total of 163 bacterial strains, selectively isolated from various sources, were studied to determine their potential to be used in Meor. A laboratory microbial screening based on physiological and metabolic profiles and growth rates under conditions representative for oil fields and reservoirs revealed that 10 bacterial strains identified as Pseudomonas aeruginosa (2), Bacillus licheniformis (2), Bacillus brevis (1), Bacillus polymyxa (1), Micrococcus varians (1), Micrococcus sp. (1), and two Vibrio species demonstrated potential to be used in oil recovery. Strains of B. licheniformis and B. polymyxa produced the most active surfactants and proved to be the most anaerobic and thermotolerant among the selected bacteria. Micrococcus and B. brevis were the most salt‐tolerant and polymer producing bacteria, respectively, whereas Vibrio sp. and B. polymyxa strains were the most gas‐producing bacteria. Three bacterial consortia were prepared with a mixture of bacteria that showed metabolic and technological complementarity and the ability to grow at a wide range of temperatures and salinity characteristics for the oil fields in Bahia, Brazil. Oil mobilization rates in laboratory column experiments using the three consortia of bacteria varied from 11.2 to 18.3 % [v/v] of the total oil under static conditions. Consortia of B. brevis, B. icheniformis and B. polymyxa exhibited the best oil mobilization rates. Using these consortia under anaerobic conditions could be an interesting alternative for Meor technology because their growth could be easily controlled through the administration of phosphate and inorganic electron acceptors. Bacterial strains selected in this work could be valuable for further application in oil recovery at productive and mature oil well sites as well as for the prevention and control of paraffin deposits.  相似文献   

13.
In 1992, a study was begun to compare the effect of landfarming vs. natural attenuation on the restoration of soil that had been contaminated with crude oil. Each of three lysimeters was filled with a sandy loam topsoil, and crude oil was applied to two of the lysimeters. One of the contaminated lysimeters was tilled, watered, and received a one-time application of fertilizer (N, P, K). No amendments were added to the second contaminated lysimeter, and the third was left uncontaminated. The lysimeters were monitored for 6 months and then left unattended. In 1995 and again in 1997 we sampled these lysimeters to evaluate the long-term effects of contamination and bioremediation. In 1995 we found marked effects on soil chemistry, bacterial, fungal, nematode, and plant populations and a higher rate of bioremediation in the fertilized-contaminated lysimeter (Lawlor et al., 1997). Data from 1997 and previously unreported data from 1995 are the subject of the current report. In 1997, low densities of hydrocarbon-degrading bacteria were found in all the lysimeters and little loss of TPH from the two contaminated lysimeters, suggesting a decreased rate of bioremediation. Nevertheless, there were increases in diversity and number of functional groups of bacteria, nematodes, and native plant species. However, molecular analyses revealed marked differences remained in the composition of dominant eubacterial species, and tests of soybeans indicated field conditions remained unsuitable for these plants.  相似文献   

14.
Dissolved Fe(II) and humic acid (HA) were pre-impregnated into contaminated soil to catalyze hydrogen peroxide to remove crude oil (CO). The effects of parameters such as initial Fe(II), HA and H2O2 concentrations on the oxidation of total petroleum hydrocarbon (TPH) were investigated using response surface methodology based on Box–Behnken design. The rate of hydrogen peroxide decomposition is decreased by pre-impregnating with dissolved Fe(II) + HA compared with only pre-impregnated Fe(II) and modified Fenton (MF). Oxygen evolution is the predominant route of hydrogen peroxide decomposition at natural pH. Unlike O2 evolution, the kinetics of hydroxyl radical (OH?) production are clearly uncoupled from H2O2 decay in these systems. The steady-state hydroxyl radical production rate is higher in the systems with pre-impregnated dissolved Fe(II) and HA, and more significance is the decrease in detectable TPH (70.84% removal efficiency) when soil is pre-impregnated with dissolved 25 mM Fe(II) + 0.7 mg/mL HA, and with the application of 700 mM H2O2, possibly due to hydrogen peroxide catalyzed by the iron of this complex (CO-HA–Fe(II)) producing hydroxyl radical in close proximity to the CO. Meanwhile, the removal efficiency of C21–C30 is up to 65.69%, which is 2.6 times higher than that of the MF (25.52%).  相似文献   

15.
Physical and biological removal of diesel oil from contaminated soil was studied in a baffled roller bioreactor. Initially, the effects of four factors (soil loading, temperature, pH, and surfactant) on physical removal of diesel oil were investigated. Only the presence of a surfactant (sodium dodecyl sulfate [SDS]) demonstrated a significant effect on diesel oil removal. Diesel oil removal efficiency was increased from 32.0% to 63.9% in the presence of 100 mg/L SDS. Using a microbial culture enriched from contaminated soil, biological treatment of diesel oil polluted soil under different soil loadings (15% to 50%), different diesel oil concentrations (1 to 50 g/L), and different types of soil (sand, silt, and clay) was then investigated in the baffled roller bioreactor. Biodegradation consisted of both fast and slow stages for degradation of light and heavy compounds, respectively. All biodegradation experiments demonstrated significant decreases in diesel oil concentrations (88.3% in 14 days for initial diesel oil concentrations of 1000 mg/L and a wide range of soil loadings). The presence of silty or sandy soils enhanced the biodegradation rate compared to the control bioreactor (without soil). The sandy soil loading had no effect on the biodegradation results. Using the enriched culture, the baffled roller bioreactor was able to biodegrade high diesel concentrations (up to 50 g/L) with biodegradation rates of 112.2 and 39.3 mg/L· h during fast and slow stages, respectively.  相似文献   

16.
The focus of this study was to investigate the effect of nutrient supplement (urea fertilizer) and microbial species augmentation (mixed culture of Aeromonas, Micrococcus, and Serratia sp.) on biodegradation of lubricating motor oil (LMO) and lead uptake by the autochthonous microorganism in LMO and lead-impacted soil were investigated. The potential inhibitory effects of lead on hydrocarbon utilization were investigated over a wide range of lead concentrations (25–200 mg/kg) owing to the complex co-contamination problem frequently encountered in most sites. Under aerobic conditions, total petroleum hydrocarbons (TPH) removal was 45.3% in the natural attenuation microcosm while a maximum of 72% and 68.2% TPH removal was obtained in biostimulation and bioaugmentation microcosms, respectively. Lead addition, as lead nitrate, to soil samples reduced the number of hydrocarbon degraders in all samples by a wide range (11–52%) depending on concentration and similarly, the metabolic activities were affected as observed in mineralization of LMO (3–60%) in soils amended with various lead concentrations. Moreover, the uptake of lead by the autochthonous microorganisms in the soil reduced with increase in the initial lead concentration. First-order kinetics described the biodegradation of LMO very well. The biodegradation rate constants were 0.015, 0.033, and 0.030 day?1 for LMO degradation in natural attenuation, biostimulation and bioaugmentation treatment microcosms, respectively. The presence of varying initial lead concentration reduced the biodegradation rate constant of LMO degradation in the biostimulation treatment microcosm. Half-life times were 46.2, 21, and 23 days for LMO degradation in natural attenuation, biostimulation and bioaugmentation treatment microcosms, respectively. The half-life time in the biostimulation treatment microcosm was increased with a range between 10.7 and 39.2 days by the presence of different initial lead concentration. The results have promising potential for effective remediation of soils co-contaminated with hydrocarbons and heavy metals.  相似文献   

17.
A method for the analysis of dissolved hydrogen sulfide in crude oil samples is demonstrated using gas chromatography. In order to effectively eliminate interferences, a two dimensional column configuration is used, with a Deans switch employed to transfer hydrogen sulfide from the first to the second column (heart-cutting). Liquid crude samples are first separated on a dimethylpolysiloxane column, and light gases are heart-cut and further separated on a bonded porous layer open tubular (PLOT) column that is able to separate hydrogen sulfide from other light sulfur species. Hydrogen sulfide is then detected with a sulfur chemiluminescence detector, adding an additional layer of selectivity. Following separation and detection of hydrogen sulfide, the system is backflushed to remove the high-boiling hydrocarbons present in the crude samples and to preserve chromatographic integrity. Dissolved hydrogen sulfide has been quantified in liquid samples from 1.1 to 500 ppm, demonstrating wide applicability to a range of samples. The method has also been successfully applied for the analysis of gas samples from crude oil headspace and process gas bags, with measurement from 0.7 to 9,700 ppm hydrogen sulfide.  相似文献   

18.
This study determined the potential of surfactant and sewage sludge in enhancing degradation of oil sludge. A mixture of oil sludge, surfactant, and sewage sludge was co-composted for 24 weeks in the laboratory. Physical and chemical parameters in the compost were measured every four weeks. Isolated microorganisms were characterized by molecular techniques. The pH in all experiments remained between 8 and 6.4. CO2 evolution reached 5503 µg/dwt/day by the twenty-fourth week. The dominant bacterial species were Acinectobacter, Rodococcus, mycobacterium, Pseudomonas, Bacillus, Arthrobacter, and Staphylococcus species and fungi were Pleurotus, Penicillium, and Aspergillus sp. TPH was reduced by 92% in the sewage sludge and surfactant treatment, 75 and 81% in other treatments, and 44.2% in the control. PAH concentrations were reduced by between 75 and 100%. The results indicate that a careful application of surfactant and sewage sludge could enhance oil sludge degradation in a compost system.  相似文献   

19.
选择了三株分别具有固氮、溶磷和解钾功能的芽孢杆菌生产菌肥。试验表明 ,无论是单一菌肥还是复合菌肥的保存期都能达到标准的要求 ;单一菌单独处理的土壤全氮、有效磷、速效钾分别增加 4.2 %、2 1.3%和 8.2 % ,混合菌处理则增加6 .6 %、32 .2 %和 10 .3% ,混合菌的处理效果优于单一菌 ,所选菌株具有土壤有效性  相似文献   

20.
An ex situ, field-scale, prepared bed land treatment unit (LTU) was used to bio-remediate soils containing petroleum hydrocarbons. Two soils were treated in side-by-side units to compare performance: (1) a clayey silt containing crude oil hydrocarbons from releases 30 to 40 years ago and (2) a silty sand containing diesel fuel hydrocarbons from a leak about three years prior to the bioremediation. The effectiveness of the bioremediation in the LTU was evaluated over a period of 18 months. The results indicated that: (1) prepared bed bioremediation reduced the hydrocarbon concentration, mobility, and relative toxicity in the soil with the diesel fuel, and (2) chemical bioavailability appeared to limit bioremediation of the soil containing the crude oil hydrocarbons. Although the soils containing the crude oil hydrocarbons contained an average of 10,000?mg TPH/kg dry soil, these soils had limited hydrocarbon availability, nontoxic conditions, and low potential for chemical migration. For the soils containing the diesel fuel, active prepared bed bioremediation of about 15 weeks was adequate to reach an environmentally acceptable endpoint. At that time, there was little further TPH loss, no MicrotoxTM toxicity, and limited hydrocarbon mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号