首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
The flux of nitrogen in large rivers in North America and Europe is well explained as a function of the net anthropogenic inputs of nitrogen to the landscape, with on average 20 to 25% of these inputs exported in rivers and 75 to 80% of the nitrogen retained or denitrified in the landscape. Here, we use data for average riverine nitrogen fluxes and anthropogenic inputs of nitrogen over a 6-year period (1988–1993) for 16 major watersheds in the northeastern United States to examine if there is also a climatic influence on nitrogen fluxes in rivers. Previous studies have shown that for any given river, nitrogen fluxes are greater in years with higher discharge, but this can be interpreted as storage of nitrogen in the landscape during dry years and flushing of this stored nitrogen during wet years. Our analyses demonstrate that there is also a longer-term steady-state influence of climate on riverine nitrogen fluxes. Those watersheds that have higher precipitation and higher discharge export a greater fraction of the net anthropogenic inputs of nitrogen. This fractional export ranges from 10 to 15% of the nitrogen inputs in drier watersheds in the northeastern United States to over 35% in the wetter watersheds. We believe this is driven by lower rates of denitrification in the wetter watersheds, perhaps because shorter water residence times do not allow for as much denitrification in riparian wetlands and low-order streams. Using mean projections for the consequences of future climate change on precipitation and discharge, we estimate that nitrogen fluxes in the Susquehanna River to Chesapeake Bay may increase by 3 to 17% by 2030 and by 16 to 65% by 2095 due to greater fractional delivery of net anthropogenic nitrogen inputs as precipitation and discharge increase. Although these projections are highly uncertain, they suggest a need to better consider the influence of climate on riverine nitrogen fluxes as part of management efforts to control coastal nitrogen pollution.  相似文献   

2.
To evaluate the effect of human activities on the amount of nitrogen (N) transported to the Three Gorges Dam (TGD), we have developed and applied a model to estimate the riverine N transport from watersheds draining into the upper Changjiang River basin. By using this model and a database of agricultural statistics, we study the temporal and spatial changes in N inputs to watersheds and surface waters. The total amount of N transported to the surface drainage waters from the agro-ecosystem in 2000 showed a 2.9-fold increase over that in 1980. Considering a constant (37%) loss rate from the river, the annual amount of N transported to the TGD from the agro-ecosystem of the Changjiang river upper basin was about 0.35 × 106, 0.47 × 106, 0.59 × 106, 0.64 × 106 and 1.01 × 106 t in 1980, 1985, 1990, 1995, and 2000, respectively. Further, the transported amount of new anthropogenic reactive N approximately quadrupled in 2000, while the amount of riverine N due to rural human waste varied slightly. Of the total N transported to surface drainage waters in 10 watersheds in 2000, the Jialingjiang watershed accounted for 35%; the TGD region, 15%; and the Toujiang, Wujiang and Minjiang watersheds, 11% each. In 1980, the N sources were concentrated in the rural areas surrounding Chendu City and Chongqing City; however, these sources considerably expanded in the 1990s. The increased use of synthetic fertilizers and the decrease in the fertilizer N-use efficiency are implicated as major causal factors of increased riverine N transport; the calculated amount of N transported to the main tributaries agrees well with previously reported data.  相似文献   

3.
Anthropogenic N inputs and riverine export were determined for a meso-scale river basin in one of the most developed and economically important regions of South America. The Piracicaba River basin is located in southeastern Brazil and drains into a tributary of the Paraná River. The basin supports over 3 million people (about 2% of the population of Brazil) with intensive agricultural and industrial activities. During two years from 1995 to 1997, biweekly samples were collected at 10 stations along the Piracicaba River and its tributaries for analyses of dissolved and particulate N. The average annual flux of dissolved inorganic N and total N increased by a factor of 15 and 20 times, respectively, from the headwaters to the lower reaches of the main channel, whereas discharge increased by only 7 times. On a per area basis, the export of TN varied according to land use and was significantly correlated to the net input of anthropogenic N. Among 10 sub-catchments composing the basin, areas mostly covered by pasture and forest had the lowest export, whereas more agricultural and urban areas had higher export. The amount of N exported from each sub-catchment varied widely, but inputs were consistently higher than fluvial outputs. Losses and retention of N occurred throughout the basin but were especially high in the sub-catchment with a main-stem reservoir, suggesting that aquatic processing plays an important role in controlling riverine N export. Total net anthropogenic input to the Piracicaba River basin was 4,500 (± 900) kg N km–2 yr–1 of which about 40% was exported via fluvial outputs.  相似文献   

4.
5.
We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr–1 out of a total for the entire North Atlantic region of 13.1 Tg yr–1 . On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km–2 yr–1.Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S.Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems.  相似文献   

6.
Large-scale changes in land use are occurring in many tropical regions, with significant impacts on nitrogen and phosphorus biogeochemistry. In this study we examine the relationships between land use, anthropogenic nutrient inputs, and riverine nutrient exports in a major agricultural watershed of the Pacific coast of South America, the Guayas River basin of Ecuador. We present comprehensive nutrient budgets for nitrogen (N) and phosphorous (P) for the Guayas River basin and 10 sub-watersheds. We quantify the four major anthropogenic nutrient fluxes into and out of the region: N and P fertilizer application, N fixation by leguminous crops, net import/export of N and P in agricultural products (food and feed), and atmospheric deposition. We also estimate inputs of N from biological N fixation in forests and of P from weathering sources in soils and bedrock. The sum of these sources represents net inputs of N and P to each watershed region. Overall, synthetic fertilizers are the largest input to the Guayas Basin for N (53%) and P (57%), and the largest outputs are N and P in crops. Losses of N and P in river export account for 14–38% of total N and P inputs, and there is significant accumulation of N and P, or unmeasured forms of N and P export, in most of the sub-basins. Nutrient balances are indicative of the sustainability of land use practices in a region, where a negative balance of N or P indicates nutrient depletion and subsequent loss of soil fertility, yield, and economic viability. Although the nutrient balance of the entire Guayas Basin is positive, there are negative or near zero balances in two sub-watersheds with extensive banana, coffee and permanent crops. In these basins, degradation of soil quality may be occurring due to these net nutrient losses. Our data show that nutrients are leaving the basin primarily as export crops, with riverine losses of nutrients smaller than crop exports. Nonetheless, there is a direct relationship between nutrient inputs and river outputs, suggesting that agricultural management practices in the basin may have direct impacts on N and P delivery to the highly productive Guayas estuary.  相似文献   

7.
Human activities have greatly increased the input of biologically available nitrogen (N) from land-based sources to aquatic ecosystems; yet few studies have examined how human actions influence N export in regions with a strong seasonality in water availability. In this study, we quantified N inputs and outputs for 23 California watersheds and examined how climate, hydrology, and land use practices influenced watershed N export. N inputs ranged from 581 to 11,234 kg N km−2 year−1 among watersheds, with 80% of total input for the region originating from agriculture (inorganic fertilizer, manure, and legumes). Of the potential N sources examined, mean annual concentrations of dissolved organic N and dissolved inorganic N in study rivers correlated most strongly with manure N input (r 2 = 0.54 and 0.53, respectively). Seasonal N export varied by basin and was correlated with climate, anthropogenic N inputs, and reservoir releases. Fractional export of watershed N inputs by study rivers annually was small (median of 8%) and scaled exponentially with runoff (r = 0.66). Collectively, our results show that anthropogenic activities have altered both the magnitude and timing of watershed N export in California and suggest that targeted management in specific locations and times of the year could reduce N export to downstream systems in the region.  相似文献   

8.
van Breemen  N  Boyer  E.W.  Goodale  C.L.  Jaworski  N.A.  Paustian  K.  Seitzinger  S.P.  Lajtha  K.  Mayer  B.  van Dam  D.  Howarth  R.W.  Nadelhoffer  K.J.  Eve  M.  Billen  G. 《Biogeochemistry》2002,(1):267-293
To assess the fate of the large amounts of nitrogen (N) brought into the environment by human activities, we constructed N budgets for sixteen large watersheds (475 to 70,189 km2) in the northeastern U.S.A. These watersheds are mainly forested (48–87%), but vary widely with respect to land use and population density. We combined published data and empirical and process models to set up a complete N budget for these sixteen watersheds. Atmospheric deposition, fertilizer application, net feed and food inputs, biological fixation, river discharge, wood accumulation and export, changes in soil N, and denitrification losses in the landscape and in rivers were considered for the period 1988 to 1992. For the whole area, on average 3420 kg of N is imported annually per km2 of land. Atmospheric N deposition, N2 fixation by plants, and N imported in commercial products (fertilizers, food and feed) contributed to the input in roughly equal contributions. We quantified the fate of these inputs by independent estimates of storage and loss terms, except for denitrification from land, which was estimated from the difference between all inputs and all other storage and loss terms. Of the total storage and losses in the watersheds, about half of the N is lost in gaseous form (51%, largely by denitrification). Additional N is lost in riverine export (20%), in food exports (6%), and in wood exports (5%). Change in storage of N in the watersheds in soil organic matter (9%) and wood (9%) accounts for the remainder of the sinks. The presence of appreciable changes in total N storage on land, which we probably under-rather than overestimated, shows that the N budget is not in steady state, so that drainage and denitrification exports of N may well increase further in the future.  相似文献   

9.
Human activities have greatly altered the nitrogen (N) cycle, accelerating the rate of N fixation in landscapes and delivery of N to water bodies. To examine relationships between anthropogenic N inputs and riverine N export, we constructed budgets describing N inputs and losses for 16 catchments, which encompass a range of climatic variability and are major drainages to the coast of the North Atlantic Ocean along a latitudinal profile from Maine to Virginia. Using data from the early 1990's, we quantified inputs of N to each catchment from atmospheric deposition, application of nitrogenous fertilizers, biological nitrogen fixation, and import of N in agricultural products (food and feed). We compared these inputs with N losses from the system in riverine export.The importance of the relative sources varies widely by catchment and is related to land use. Net atmospheric deposition was the largest N source (>60%) to the forested basins of northern New England (e.g. Penobscot and Kennebec); net import of N in food was the largest source of N to the more populated regions of southern New England (e.g. Charles & Blackstone); and agricultural inputs were the dominant N sources in the Mid-Atlantic region (e.g. Schuylkill & Potomac). Over the combined area of the catchments, net atmospheric deposition was the largest single source input (31%), followed by net imports of N in food and feed (25%), fixation in agricultural lands (24%), fertilizer use (15%), and fixation in forests (5%). The combined effect of fertilizer use, fixation in crop lands, and animal feed imports makes agriculture the largest overall source of N. Riverine export of N is well correlated with N inputs, but it accounts for only a fraction (25%) of the total N inputs. This work provides an understanding of the sources of N in landscapes, and highlights how human activities impact N cycling in the northeast region.  相似文献   

10.
We present the first estimates of net anthropogenic nitrogen input (NANI) in European boreal catchments. In Swedish catchments, nitrogen (N) deposition is a major N input (31–94%). Hence, we used two different N deposition inputs to calculate NANI for 36 major Swedish catchments. The relationship between riverine N export and NANI was strongest when using only oxidized deposition (NOy) as atmospheric input (r2 = 0.70) rather than total deposition (i.e., both oxidized and reduced nitrogen, NOy + NHx deposition, r2 = 0.62). The y-intercept (NANI = 0) for the NANI calculated with NOy is significantly different from zero (p = 0.0042*) and indicates a background flux from the catchment of some 100 kg N km?2 year?1 in addition to anthropogenic inputs. This agrees with similar results from North American boreal catchments. The slope of the linear regressions was 0.25 for both N deposition inputs (NOy and NOy + NHx), suggesting that on average, 25% of the anthropogenic N inputs is exported by rivers to the Baltic Sea. Agricultural catchments in central and southern Sweden have increased their riverine N export up to tenfold compared to the inferred background flux. Although the relatively unperturbed northernmost catchments receive significant N loads from atmospheric deposition, these catchments do not show significantly elevated riverine N export. The fact that nitrogen export in Swedish catchments appears to be higher in proportion to NANI at higher loads suggests that N retention may be saturating as loading rates increase. In northern and western Sweden the export of nitrogen is largely controlled by the hydraulic load, i.e., the riverine discharge normalized by water surface area, which has units of distance time?1. Besides hydraulic load the percent total forest cover also affects the nitrogen export primarily in the northern and western catchments.  相似文献   

11.
Global 0.5- by 0.5-degree resolution estimates are presented on the fate of nitrogen (N) stemming from point and nonpoint sources, including plant uptake, denitrification, leaching from the rooting zone, rapid flow through shallow groundwater, and slow flow through deep groundwater to riverine systems. Historical N inputs are used to describe the N flows in groundwater. For nonpoint N sources (agricultural and natural ecosystems), calculations are based on local hydrology, climate, geology, soils, climate and land use combined with data for 1995 on crop production, N inputs from N fertilizers and animal manure, and estimates for ammonia emissions, biological N fixation, and N deposition. For point sources, our estimates are based on population densities and human N emissions, sanitation, and treatment. The results provide a first insight into the magnitude of the N losses from soil-plant systems and point sources in various parts of the world, and the fate of N during transport in atmosphere, groundwater, and surface water. The contribution to the river N load by anthropogenic N pollution is dominant in many river basins in Europe, Asia, and North Africa. Our model results explain much of the variation in measured N export from different world river basins.  相似文献   

12.
Stable isotope analysis of organic matter in sediment records has long been used to track historical changes in productivity and carbon cycling in marine and lacustrine ecosystems. While flow dynamics preclude stratigraphic measurements of riverine sediments, such retrospective analysis is important for understanding biogeochemical cycling in running waters. Unique collections of riverine fish scales were used to analyse δ15N and δ13C variations in the food web of two European rivers that experience different degrees of anthropogenic pressure. Over the past four decades, dissolved inorganic N loading remained low and constant in the Teno River (70°N, Finland); in contrast, N loading increased fourfold in the Scorff River (47°N, France) over the same period. Archived scales of Atlantic salmon parr, a riverine life‐stage that feeds on aquatic invertebrates, revealed high δ15N values in the Scorff River reflecting anthropogenic N inputs to that riverine environment. A strong correlation between dissolved inorganic N loads and δ13C values in fish scales was observed in the Scorff River, whereas no trend was found in the Teno River. This result suggests that anthropogenic N‐nutrients enhanced atmospheric C uptake by primary producers and its transfer to fish. Our results illustrate for the first time that, as for lakes and marine ecosystems, historical changes in anthropogenic N loading can affect C cycling in riverine food webs, and confirm the long‐term interactions between N and C biogeochemical cycles in running waters.  相似文献   

13.
流域人类活动净氮输入量的估算、不确定性及影响因素   总被引:1,自引:0,他引:1  
张汪寿  李叙勇  杜新忠  郝韶楠 《生态学报》2014,34(24):7454-7464
人类活动使得大量的氮素进入流域生态系统,大量氮的盈余导致了一系列生态环境问题的出现。为了评估人类活动对流域生态系统的影响,Howarth等于1996年提出了人类活动净氮输入(NANI)的概念。综述了当前人类活动净氮输入的估算方法、不确定性及影响因素,并得到以下结论:导致NANI估算结果的不确定性原因主要有:内涵分歧、数据来源、尺度转换、估算方法的分歧。影响NANI的主要因素包括:各输入项、人口密度、土地利用组成;对于各输入项而言,化肥施用是最主要的氮素输入来源,占人类活动净氮输入总量的79.0%,其次为作物固氮,占17.6%,食品/饲料氮净输入量占-14.5%,大气沉降占15.7%;对于人口密度,NANI随着人口密度的增大而增大,当人口密度高于100人/km2,人口密度对NANI的影响趋于稳定,其他因素起主导作用。对于土地利用组成:NANI与森林面积比例成负相关,而与耕地面积比例成正相关。  相似文献   

14.
We estimated net anthropogenic phosphorus inputs (NAPI) to 18 Lake Michigan (LM) and 6 Lake Erie (LE) watersheds for 1974, 1978, 1982, 1987, and 1992. NAPI quantifies all anthropogenic inputs of P (fertilizer use, atmospheric deposition, and detergents) as well as trade of P in food and feed, which can be a net input or output. Fertilizer was the dominant input overall, varying by three orders of magnitude among the 24 watersheds, but detergent was the largest input in the most urbanized watershed. NAPI increased in relation to area of disturbed land (R2 = 0.90) and decreased with forested and wetland area (R2 = 0.90). Export of P by rivers varied with NAPI, especially for the 18 watersheds of LM (R2 = 0.93), whereas the relationship was more variable among the six LE watersheds (R2 = 0.59). On average, rivers of the LE watersheds exported about 10% of NAPI, whereas LM watersheds exported 5% of estimated NAPI. A comparison of our results with others as well as nitrogen (N) budgets suggests that fractional export of P may vary regionally, as has been reported for N, and the proportion of P inputs exported by rivers appears lower than comparable findings with N.  相似文献   

15.
Stream nitrogen (N) export and nitrate concentration were measured at 14 forested watersheds (GEOMON network) in the Czech Republic between 1994 and 2005. In the last several decades, emissions of sulfur (S) and N compounds have decreased throughout much of Europe. In the Czech Republic, atmospheric deposition of S has decreased substantially since the beginning of 1990s, whereas N deposition remains largely unchanged at most sites. The mean dissolved inorganic nitrogen (DIN) streamwater export ranged from 0.2 to 12.2 kg ha−1 y−1 at the GEOMON sites. Despite decades of elevated N deposition, 44–98% of DIN inputs to these watersheds were retained or denitrified, and many watersheds showed seasonal variation in nitrate concentrations. Dissolved organic N export was quantified in 1 year only and ranged from 0.05 to 3.5 kg ha−1 y−1. Spatial variability in DIN export among watersheds was best explained by spatial variability in average acidic deposition, particularly S deposition (R 2 = 0.81, P < 0.001); DIN input and forest floor carbon:nitrogen (C/N) also provided significant explanatory power. DIN export was strongly influenced by the forest floor C/N ratio and depth of the forest floor soils (R 2 = 0.72, P < 0.001). The only variable that predicted variations in forest floor C/N (R 2 = 0.32, P < 0.05) among watersheds was S deposition. Forest floor depth was also related to deposition variables, with S deposition providing the most explanatory power (R 2 = 0.50, P < 0.01). Variation in forest floor depth was also associated with climatic factors (precipitation and temperature). Temporal variability in DIN export was primarily associated with changes in acidic deposition over time; S deposition explained 41% of variability in DIN exports among all watersheds and years. Extensive acidification of forested watersheds was associated with the extraordinarily high S inputs to much of the Czech Republic during earlier decades. We hypothesize that recovery from acidification has led to improved tree health as well as enhanced microbial activity in the forest floor. As these watersheds move into a new regime with dramatically lower sulfur inputs, we expect continued declines in nitrate output.  相似文献   

16.
To study the long-term change in nutrient loads from the Hii River to Lake Shinji, water samples were taken repeatedly over a year in 1983/1984 and again in 2001/2002. Annual total nitrogen (TN) loads, estimated from observations of water quality and river flow, increased from 860 to 920 t with a corresponding increase in NO3–N concentration during the cool season. In contrast, total phosphorus (TP) loads decreased from 96 to 62 t. Annual TN and TP loads, calculated using emission factors and annual statistics for the catchments, showed a tendency to decline from 1986 to 2002. No source could be identified which would result in the increase in TN in the catchments, therefore, the increase in observed TN loads was considered to originate in other areas. Atmospheric nitrogen deposition transported from long distances has elevated the sum of NH4–N and NO3–N concentration in rainwater in the cool season. Therefore, it was considered that this resulted in the increase in TN loads in the Hii River.  相似文献   

17.
《Harmful algae》2009,8(1):33-38
Nutrient over-enrichment from land-based sources has degraded estuarine and coastal marine waters worldwide. Linking nutrient loading, in magnitude and form, to specific ecosystem effects, however, has been a challenge on the global scale. The harmful algal species Prorocentrum minimum has long been thought to be associated with eutrophication based on several site-specific long-term databases and a previous review of its global spreading. Using recently developed spatially explicit models that quantify global river nitrogen (N) and phosphorus (P) export to the coastal zone and the contribution of natural and anthropogenic sources, as well as a review of the global distribution of P. minimum, we show that this HAB species is associated with regions of high dissolved inorganic nitrogen (DIN) and phosphorus (DIP) exports that are strongly influenced by anthropogenic sources (such as fertilizers and manures for DIN). Blooms of this species were also linked to regions with relatively high anthropogenic contributions to dissolved organic N and P export. The global distribution of this species is expected to expand, given that nutrient inputs to watersheds from agriculture, sewage and fossil fuel combustion are projected to more than double by 2050 unless technological advances and policy changes are implemented.  相似文献   

18.
This study examined impacts of succession on N export from 20 headwater stream systems in the west central Cascades of Oregon, a region of low anthropogenic N inputs. The seasonal and successional patterns of nitrate (NO3−N) concentrations drove differences in total dissolved N concentrations because ammonium (NH4−N) concentrations were very low (usually < 0.005 mg L−1) and mean dissolved organic nitrogen (DON) concentrations were less variable than nitrate concentrations. In contrast to studies suggesting that DON levels strongly dominate in pristine watersheds, DON accounted for 24, 52, and 51% of the overall mean TDN concentration of our young (defined as predominantly in stand initiation and stem exclusion phases), middle-aged (defined as mixes of mostly understory reinitiation and older phases) and old-growth watersheds, respectively. Although other studies of cutting in unpolluted forests have suggested a harvest effect lasting 5 years or less, our young successional watersheds that were all older than 10 years still lost significantly more N, primarily as NO3−N, than did watersheds containing more mature forests, even though all forest floor and mineral soil C:N ratios were well above levels reported in the literature for leaching of dissolved inorganic nitrogen. The influence of alder may contribute to these patterns, although hardwood cover was quite low in all watersheds; it is possible that in forested ecosystems with very low anthropogenic N inputs, even very low alder cover in riparian zones can cause elevated N exports. Only the youngest watersheds, with the highest nitrate losses, exhibited seasonal patterns of increased summer uptake by vegetation as well as flushing at the onset of fall freshets. Older watersheds with lower N losses did not exhibit seasonal patterns for any N species. The results, taken together, suggest a role for both vegetation and hydrology in N retention and loss, and add to our understanding of N cycling by successional forest ecosystems influenced by disturbance at various spatial and temporal scales in a region of relatively low anthropogenic N input.  相似文献   

19.
Estimated historical and current nitrogen balances for Illinois   总被引:1,自引:0,他引:1  
The Midwest has large riverine exports of nitrogen (N), with the largest flux per unit area to the Mississippi River system coming from Iowa and Illinois. We used historic and current data to estimate N inputs, outputs, and transformations for Illinois where human activity (principally agriculture and associated landscape drainage) have had a dominant impact. Presently, approximately 800,000 Mg of N is added each year as fertilizer and another 420,000 Mg is biologically fixed, primarily by soybean (Glycine max L. Merr.). These annual inputs are greater than exports in grain, which results in surplus N throughout the landscape. Rivers within the state export approximately 50% of this surplus N, mostly as nitrate, and the remainder appears to be denitrified or temporarily incorporated into the soil organic matter pool. The magnitude of N losses for 1880, 1910, 1950, and 1990 are compared. Initial cultivation of the prairies released large quantities of N (approximately 500,000 Mg N year(-1)), and resulted in riverine N transport during the late 19th century that appears to have been on the same order of magnitude as contemporary N losses. Riverine flux was estimated to have been at a minimum in about 1950, due to diminished net mineralization and low fertilizer inputs. Residual fertilizer N from corn (Zea mays L.), biological N fixed by soybean, short-circuiting of soil water through artificial drainage, and decreased cropping-system diversity appear to be the primary sources for current N export.  相似文献   

20.
The stable nitrogen (N) isotope ratio (??15N) has been used to examine the anthropogenic N input (i.e., septic water, wastewater, and manure) to aquatic ecosystems, because anthropogenic N generally has a ??15N signature distinct from that found in nature. Aquatic organisms and the derived organic matter such as sediments are reported to become increasingly enriched in 15N as the human population density increases in watersheds. However, little is known about the relationship in steppe ecosystems, where the livestock population is greater than that of humans. Here, we conducted a preliminary study in the Selenga river mainstream watershed in Mongolia, which covers an area of approximately 300,000?km2. A multiple regression analysis revealed that the ??15N of the riverine sediment was significantly affected by the human population density and more significantly by livestock population density. The population density, including both humans and livestock, significantly influenced ??15N of the macrophytic Potamogeton spp. The results showed that ??15N of riverine organic matter can be an indicator of the human and livestock population density, which is likely associated with the status of N cycles in livestock-dominated watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号