共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha-herpesviruses establish a life-long infection in the nervous system of the affected host; while this infection is restricted to peripheral neurons in a healthy host, the reactivated virus can spread within the neuronal circuitry, such as to the brain, in compromised individuals and lead to adverse health outcomes. Pseudorabies virus (PRV), an alpha-herpesvirus, requires the viral protein Us9 to sort virus particles into axons and facilitate neuronal spread. Us9 sorts virus particles by mediating the interaction of virus particles with neuronal transport machinery. Here, we report that Us9-mediated regulation of axonal sorting also depends on the state of neuronal maturation. Specifically, the development of dendrites and axons is accompanied with proteomic changes that influence neuronal processes. Immature superior cervical ganglionic neurons (SCGs) have rudimentary neurites that lack markers of mature axons. Immature SCGs can be infected by PRV, but they show markedly reduced Us9-dependent regulation of sorting, and increased Us9-independent transport of particles into neurites. Mature SCGs have relatively higher abundances of proteins characteristic of vesicle-transport machinery. We also identify Us9-associated neuronal proteins that can contribute to axonal sorting and subsequent anterograde spread of virus particles in axons. We show that SMPD4/nsMase3, a sphingomyelinase abundant in lipid-rafts, associates with Us9 and is a negative regulator of PRV sorting into axons and neuronal spread, a potential antiviral function. 相似文献
2.
Pseudorabies virus (PRV) mutants lacking the Us9 gene cannot spread from presynaptic to postsynaptic neurons in the rat visual system, although retrograde spread remains unaffected. We sought to recapitulate these findings in vitro using the isolator chamber system developed in our lab for analysis of the transneuronal spread of infection. The wild-type PRV Becker strain spreads efficiently to postsynaptic neurons in vitro, whereas the Us9-null strain does not. As determined by indirect immunofluorescence, the axons of Us9-null infected neurons do not contain the glycoproteins gB and gE, suggesting that their axonal sorting is dependent on Us9. Importantly, we failed to detect viral capsids in the axons of Us9-null infected neurons. We confirmed this observation by using three different techniques: by direct fluorescence of green fluorescent protein-tagged capsids; by transmission electron microscopy; and by live-cell imaging in cultured, sympathetic neurons. This finding has broad impact on two competing models for how virus particles are trafficked inside axons during anterograde transport and redefines a role for Us9 in viral sorting and transport. 相似文献
3.
The pseudorabies virus (PRV) Us3 gene is conserved among the alphaherpesviruses and encodes a serine/threonine protein kinase that is not required for growth in standard cell lines. In this report, we used a compartmented culture system to investigate the role of PRV Us3 in viral replication in neurons, in spread from neurons to PK15 cells, and in axon-mediated spread of infection. We also examined the role of Us3 in neuroinvasion and virulence in rodents. Us3 null mutants produce about 10-fold less infectious virus from neurons than wild-type virus and have no discernible phenotypes for axonal targeting of viral components in cultured peripheral nervous system neurons. After eye infection in rodents, Us3 null mutants were slightly attenuated for virulence, with a delayed onset of symptoms compared to the wild type or a Us3 null revertant. While initially delayed, the symptoms increased in severity until they approximated those of the wild-type virus. Us3 null mutants were neuroinvasive, spreading in both efferent and afferent circuits innervating eye tissues. 相似文献
4.
Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection 总被引:3,自引:0,他引:3 下载免费PDF全文
The alphaherpesvirus Us4 gene encodes glycoprotein G (gG), which is conserved in most viruses of the alphaherpesvirus subfamily. In the swine pathogen pseudorabies virus (PRV), mutant viruses with internal deletions and insertions in the gG gene have shown no discernible phenotypes. We report that insertions in the gG locus of the attenuated PRV strain Bartha show reduced virulence in vivo and are defective in their ability to spread from cell to cell in a cell-type-specific manner. Similar insertions in the gG locus of the wild-type PRV strain Becker had no effect on the ability of virus infection to spread between cells. Insertions in the gG locus of the virulent NIA-3 strain gave results similar to those found with the Bartha strain. To examine the role of gG in cell-to-cell spread, a nonsense mutation in the gG signal sequence was constructed and crossed into the Bartha strain. This mutant, PRV157, failed to express gG yet had cell-to-cell spread properties indistinguishable from those of the parental Bartha strain. These data indicated that, while insertions in the gG locus result in decreased cell-to-cell spread, the phenotype was not due to loss of gG expression as first predicted. Analysis of gene expression upstream and downstream of gG revealed that expression of the upstream Us3 protein is reduced by insertion of lacZ or egfp at the gG locus. By contrast, expression of the gene immediately downstream of gG, Us6, which encodes glycoprotein gD, was not affected by insertions in gG. These data indicate that DNA insertions in gG have polar effects and suggest that the serine/threonine kinase encoded by the Us3 gene, and not gG, functions in the spread of viral infection between cells. 相似文献
5.
Pseudorabies virus membrane proteins gI and gE facilitate anterograde spread of infection in projection-specific neurons in the rat 下载免费PDF全文
The membrane proteins gI and gE of Pseudorabies virus (PRV) are required for viral invasion and spread through some neural pathways of the rodent central nervous system. Following infection of the rat retina with wild-type PRV, virus replicates in retinal ganglion neurons and anterogradely spreads to infect all visual centers in the brain. By contrast, gI and gE null mutants do not infect a specific subset of the visual centers, e.g., the superior colliculus and the dorsal lateral geniculate nucleus. In previous experiments, we suggested that the defect was not due to inability to infect projection-specific retinal ganglion cells, because mixed infection of a gE deletion mutant and a gI deletion mutant restored the wild-type phenotype (i.e., genetic complementation occurred). In the present study, we provide direct evidence that gE and gI function to promote the spread of infection after entry into primary neurons. We used stereotaxic central nervous system injection of a fluorescent retrograde tracer into the superior colliculus and subsequent inoculation of a PRV gI-gE double null mutant into the eye of the same animal to demonstrate that viral antigen and fluorescent tracer colocalize in retinal ganglion cells. Furthermore, we demonstrate that direct injection of a PRV gI-gE double null mutant into the superior colliculus resulted in robust infection followed by retrograde transport to the eye and replication in retinal ganglion neuron cell bodies. These experiments provide additional proof that the retinal ganglion cells projecting to the superior colliculus are susceptible and permissive to gE and gI mutant viruses. Our studies confirm that gI and gE specifically facilitate anterograde spread of infection by affecting intracellular processes in the primary infected neuron such as anterograde transport in axons or egress from axon terminals. 相似文献
6.
The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system. 相似文献
7.
Intracellular trafficking and localization of the pseudorabies virus Us9 type II envelope protein to host and viral membranes 下载免费PDF全文
The Us9 protein is a phosphorylated membrane protein present in the lipid envelope of pseudorabies virus (PRV) particles in a unique tail-anchored type II membrane topology. In this report, we demonstrate that the steady-state residence of the Us9 protein is in a cellular compartment in or near the trans-Golgi network (TGN). Through internalization assays with an enhanced green fluorescent protein epitope-tagged Us9 protein, we demonstrate that the maintenance of Us9 to the TGN region is a dynamic process involving retrieval of molecules from the cell surface. Deletion analysis of the cytoplasmic tail reveals that an acidic cluster containing putative phosphorylation sites is necessary for the recycling of Us9 from the plasma membrane. The absence of this cluster results in the relocalization of Us9 to the plasma membrane due to a defect in endocytosis. The acidic motif, however, does not contain signals needed to direct the incorporation of Us9 into viral envelopes. In this study, we also investigate the role of a dileucine endocytosis signal in the Us9 cytoplasmic tail in the recycling and retention of Us9 to the TGN region. Site-directed mutagenesis of the dileucine motif results in an increase in Us9 plasma membrane staining and a partial internalization defect. 相似文献
8.
Glycoprotein D-independent spread of pseudorabies virus infection in cultured peripheral nervous system neurons in a compartmented system 下载免费PDF全文
The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments was employed. We discovered that PRV infection could spread efficiently from neurons to cells and back to neurons in the absence of gD, the viral ligand required for entry of extracellular particles. Unexpectedly, PRV infection can also spread transneuronally via axo-axonal contacts. We show that this form of interaxonal spread between neurons is gD independent and is not mediated by extracellular virions. We also found that unlike PRV gD, HSV-1 gD is required for neuron-to-cell spread of infection. Neither of the host cell gD receptors (HVEM and nectin-1) is required in target primary fibroblasts for neuron-to-cell spread of HSV-1 or PRV infection. 相似文献
9.
In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein 下载免费PDF全文
Duprex WP McQuaid S Roscic-Mrkic B Cattaneo R McCallister C Rima BK 《Journal of virology》2000,74(17):7972-7979
This study focused on the in vitro infection of mouse and human neuroblastoma cells and the in vivo infection of the murine central nervous system with a recombinant measles virus. An undifferentiated mouse neuroblastoma cell line (TMN) was infected with the vaccine strain of measles virus (MVeGFP), which expresses enhanced green fluorescent protein (EGFP). MVeGFP infected the cells, and cell-to-cell spread was studied by virtue of the resulting EGFP autofluorescence, using real-time confocal microscopy. Cells were differentiated to a neuronal phenotype, and extended processes, which interconnected the cells, were observed. It was also possible to infect the differentiated neuroblastoma cells (dTMN) with MVeGFP. Single autofluorescent EGFP-positive cells were selected at the earliest possible point in the infection, and the spread of EGFP autofluorescence was monitored. In this instance the virus used the interconnecting processes to spread from cell to cell. Human neuroblastoma cells (SH-SY-5Y) were also infected with MVeGFP. The virus infected these cells, and existing processes were used to initiate new foci of infection at distinct regions of the monolayer. Transgenic animals expressing CD46, a measles virus receptor, and lacking interferon type 1 receptor gene were infected intracerebrally with MVeGFP. A productive infection ensued, and the mice exhibited clinical signs of infection, such as ataxia and an awkward gait, identical to those previously observed for the parental virus (Edtag). Mice were sacrificed, and brain sections were examined for EGFP autofluorescence by confocal scanning laser microscopy over a period of 6 h. EGFP was detected in discrete focal regions of the brain and in processes, which extended deep into the parenchyma. Collectively, these results indicate (i) that MVeGFP can be used to monitor virus replication sensitively, in real time, in animal tissues, (ii) that infection of ependymal cells and neuroblasts provides a route by which measles virus can enter the central nervous system in mouse models of encephalitis, and (iii) that upon infection, the virus spreads transneuronally. 相似文献
10.
Attenuation of green fluorescent protein half-life in mammalian cells 总被引:13,自引:0,他引:13
The half-life of the green fluorescent protein (GFP) was determined biochemically in cultured mouse LA-9 cells. The wild-type protein was found to be stable with a half-life of approximately 26 h, but could be destabilized by the addition of putative proteolytic signal sequences derived from proteins with shorter half-lives. A C-terminal fusion of a PEST sequence from the mouse ornithine decarboxylase gene reduced the half-life to 9.8 h, resulting in a GFP variant suitable for the study of dynamic cellular processes. In an N-terminal fusion containing the mouse cyclin B1 destruction box, it was reduced to 5.8 h, with most degradation taking place at metaphase. The combination of both sequences produced a similar GFP half-life of 5.5 h. Thus, the stability of this marker protein can be controlled in predetermined ways by addition of the appropriate proteolytic signals. 相似文献
11.
Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system 下载免费PDF全文
The protein product of the pseudorabies virus (PRV) Us9 gene is a phosphorylated, type II membrane protein that is inserted into virion envelopes and accumulates in the trans-Golgi network. It is among a linked group of three envelope protein genes in the unique short region of the PRV genome which are absent from the attenuated Bartha strain. We found that two different Us9 null mutants exhibited no obvious phenotype after infection of PK15 cells in culture. Unlike those of gE and gI null mutants, the plaque size of Us9 null mutants on Madin-Darby bovine kidney cells was indistinguishable from that of wild-type virus. However, both of the Us9 null mutants exhibited a defect in anterograde spread in the visual and cortical circuitry of the rat. The visual system defect was characterized by restricted infection of a functionally distinct subset of visual projections involved in the temporal organization of behavior, whereas decreased anterograde spread of virus to the cortical projection targets was characteristic of animals receiving direct injections of virus into the cortex. Spread of virus through retrograde pathways in the brain was not compromised by a Us9 deletion. The virulence of the Us9 null mutants, as measured by time to death and appearance of symptoms of infection, also was reduced after their injection into the eye, but not after cortical injection. Through sequence analysis, construction of revertants, measurement of gE and gI protein synthesis in the Us9 null mutants, and mixed-infection studies of rats, we conclude that the restricted-spread phenotype after infection of the rat nervous system reflects the loss of Us9 and is not an indirect effect of the Us9 mutations on expression of glycoproteins gE and gI. Therefore, at least three viral envelope proteins, Us9, gE, and gI, function together to promote efficient anterograde transneuronal infection by PRV in the rat central nervous system. 相似文献
12.
Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail 下载免费PDF全文
The Us9 gene is conserved among most alphaherpesviruses. In pseudorabies virus (PRV), the Us9 protein is a 98-amino-acid, type II membrane protein found in the virion envelope. It localizes to the trans-Golgi network (TGN) region in infected and transfected cells and is maintained in this compartment by endocytosis from the plasma membrane. Viruses with Us9 deleted have no observable defects in tissue culture yet have reduced virulence and restricted spread to retinorecipient neurons in the rodent brain. In this report, we demonstrate that Us9-promoted transneuronal spread in vivo is dependent on a conserved acidic motif previously shown to be essential for the maintenance of Us9 in the TGN region and recycling from the plasma membrane. Mutant viruses with the acidic motif deleted have an anterograde spread defect indistinguishable from that of Us9 null viruses. Transneuronal spread, however, is not dependent on a dileucine endocytosis motif in the Us9 cytoplasmic tail. Through alanine scanning mutagenesis of the acidic motif, we have identified two conserved tyrosine residues that are essential for Us9-mediated spread as well as two serine residues, comprising putative consensus casein kinase II sites, that modulate the rate of PRV transneuronal spread in vivo. 相似文献
13.
Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies 下载免费PDF全文
The molecular mechanisms responsible for long-distance, directional spread of alphaherpesvirus infections via axons of infected neurons are poorly understood. We describe the use of red and green fluorescent protein (GFP) fusions to capsid and tegument components, respectively, to visualize purified, single extracellular virions and axonal assemblies after pseudorabies virus (PRV) infection of cultured neurons. We observed heterogeneity in GFP fluorescence when GFP was fused to the tegument component VP22 in both single extracellular virions and discrete puncta in infected axons. This heterogeneity was observed in the presence or absence of a capsid structure detected by a fusion of monomeric red fluorescent protein to VP26. The similarity of the heterogeneous distribution of these fluorescent protein fusions in both purified virions and in axons suggested that tegument-capsid assembly and axonal targeting of viral components are linked. One possibility was that the assembly of extracellular and axonal particles containing the dually fluorescent fusion proteins occurred by the same process in the cell body. We tested this hypothesis by treating infected cultured neurons with brefeldin A, a potent inhibitor of herpesvirus maturation and secretion. Brefeldin A treatment disrupted the neuronal secretory pathway, affected fluorescent capsid and tegument transport in the cell body, and blocked subsequent entry into axons of capsid and tegument proteins. Electron microscopy demonstrated that in the absence of brefeldin A treatment, enveloped capsids entered axons, but in the presence of the inhibitor, unenveloped capsids accumulated in the cell body. These results support an assembly process in which PRV capsids acquire a membrane in the cell body prior to axonal entry and subsequent transport. 相似文献
14.
Miyazaki M Segawa H Yamashita T Zhu Y Takizawa K Hasegawa M Taira H 《Bioscience, biotechnology, and biochemistry》2010,74(11):2293-2298
Sendai virus (SeV) is an enveloped virus with a non-segmented negative-strand RNA genome. SeV envelope fusion (F) glycoproteins play crucial roles in the viral life cycle in processes such as viral binding, assembly, and budding. In this study, we developed a viable recombinant SeV designated F-EGFP SeV/ΔF, in which the F protein was replaced by an F protein fused to EGFP at the carboxyl terminus. Living infected cells of the recombinant virus were directly visualized by green fluorescence. The addition of EGFP to the F protein maintained the activities of the F protein in terms of intracellular transport to the plasma membrane via the ER and the Golgi apparatus and fusion activity in the infected cells. These results suggest that this fluorescent SeV is a useful tool for studying the viral binding, assembly, and budding mechanisms of F proteins and the SeV life cycle in living infected cells. 相似文献
15.
A fluorometric assay for pepsin and pepsinogen was developed using enhanced green fluorescent protein (EGFP) as a substrate. Acid denaturation of EGFP resulted in a complete loss of fluorescence that was completely reversible on neutralization. In the proteolytic assay procedure, acid-denatured EGFP was digested by pepsin or activated pepsinogen. After neutralization, the remaining amount of undigested EGFP refolded and was determined by fluorescence. Under standard digestion conditions, 4.8-24.0 ng pepsin or pepsinogen was used. Using porcine pepsin as a standard, 38+/-6.7 ng EGFP was digested per min-1 ng pepsin-1. Activated porcine pepsinogen revealed a similar digestion rate (37.2+/-5.2 ng EGFP min-1 ng activated pepsinogen-1). The sensitivity of the proteolysis assay depended on the time of digestion and the temperature. Increasing temperature and incubation time allowed quantification of pepsin or pepsinogen in a sample even in the picogram range. The pepsin-catalyzed EGFP digestion showed typical Michaelis-Menten kinetics. Km and Vmax values were determined for the pepsin and activated pepsinogen. Digestion of EGFP by pepsin revealed distinct cleavage sites, as analyzed by SDS-PAGE. 相似文献
16.
Kyoko Chiba Masahiko Araseki Keisuke Nozawa Keiko Furukori Yoichi Araki Takahide Matsushima Tadashi Nakaya Saori Hata Yuhki Saito Seiichi Uchida Yasushi Okada Angus C. Nairn Roger J. Davis Tohru Yamamoto Masataka Kinjo Hidenori Taru Toshiharu Suzuki 《Molecular biology of the cell》2014,25(22):3569-3580
Alzheimer''s β-amyloid precursor protein (APP) associates with kinesin-1 via JNK-interacting protein 1 (JIP1); however, the role of JIP1 in APP transport by kinesin-1 in neurons remains unclear. We performed a quantitative analysis to understand the role of JIP1 in APP axonal transport. In JIP1-deficient neurons, we find that both the fast velocity (∼2.7 μm/s) and high frequency (66%) of anterograde transport of APP cargo are impaired to a reduced velocity (∼1.83 μm/s) and a lower frequency (45%). We identified two novel elements linked to JIP1 function, located in the central region of JIP1b, that interact with the coiled-coil domain of kinesin light chain 1 (KLC1), in addition to the conventional interaction of the JIP1b 11–amino acid C-terminal (C11) region with the tetratricopeptide repeat of KLC1. High frequency of APP anterograde transport is dependent on one of the novel elements in JIP1b. Fast velocity of APP cargo transport requires the C11 domain, which is regulated by the second novel region of JIP1b. Furthermore, efficient APP axonal transport is not influenced by phosphorylation of APP at Thr-668, a site known to be phosphorylated by JNK. Our quantitative analysis indicates that enhanced fast-velocity and efficient high-frequency APP anterograde transport observed in neurons are mediated by novel roles of JIP1b. 相似文献
17.
为探索哺乳动物非经典分泌信号肽在毕赤酵母表达系统中引导重组蛋白分泌的作用,本研究将一段来源于小鼠同源异型框蛋白(En2)的分泌信号序列(SS)融合至EGFP蛋白的N端,在毕赤酵母中表达。实验结果显示SS信号肽能通过一种不同于经典的内质网-高尔基体分泌通路的方式将EGFP蛋白分泌至细胞膜表面,与α交配因子前导肽相比,显著降低了细胞的内质网压力。本研究提示哺乳动物非经典分泌信号肽可作为递送重组蛋白至酵母膜表面的一项工具。 相似文献
18.
Sumantra Chatterjee Petra Kraus V. Sivakamasundari Xing Xing Sook Peng Yap Song Jie Thomas Lufkin 《Biotechnology letters》2013,35(12):1991-1996
Traditionally, conditional knockout studies in mouse have utilized the Cre or Flpe technology to activate the expression of reporter genes such as lacZ or PLAP. Employing these reporter genes, however, requires tissue fixation. To make way for downstream in vivo or in vitro applications, we have inserted enhanced green fluorescent protein (EGFP) into the endogenous Sox9 locus and generated a novel conditional Sox9 null allele, by flanking the entire Sox9 coding region with loxP sites and inserting an EGFP reporter gene into the 3′-UTR allowing for EGFP to be expressed upon Sox9 loss of function yet under the control of the endogenous Sox9 promoter. Mating this new allele to any Cre-expressing line, the fate of Sox9 null cells can be traced in the cell type of interest in vivo or in vitro after fluorescence-activated cell sorting. 相似文献
19.
Zhangyong Ning Yongzheng Peng Wenbo Hao Chaohui Duan Daniel L Rock Shuhong Luo 《BMC veterinary research》2011,7(1):1-11
Background
The purpose of this study was to compare the effects of 0.5 fraction of inspired oxygen (FiO2) and >0.95 FiO2 on pulmonary gas exchange, shunt fraction and oxygen delivery (DO2) in dorsally recumbent horses during inhalant anesthesia. The use of 0.5 FiO2 has the potential to reduce absorption atelectasis (compared to maximal FiO2) and augment alveolar oxygen (O2) tensions (compared to ambient air) thereby improving gas exchange and DO2. Our hypothesis was that 0.5 FiO2 would reduce ventilation-perfusion mismatching and increase the fraction of pulmonary blood flow that is oxygenated, thus improving arterial oxygen content and DO2.Results
Arterial partial pressures of O2 were significantly higher than preanesthetic levels at all times during anesthesia in the >0.95 FiO2 group. Arterial partial pressures of O2 did not change from preanesthetic levels in the 0.5 FiO2 group but were significantly lower than in the >0.95 FiO2 group from 15 to 90 min of anesthesia. Alveolar to arterial O2 tension difference was increased significantly in both groups during anesthesia compared to preanesthetic values. The alveolar to arterial O2 tension difference was significantly higher at all times in the >0.95 FiO2 group compared to the 0.5 FiO2 group. Oxygen delivery did not change from preanesthetic values in either group during anesthesia but was significantly lower than preanesthetic values 10 min after anesthesia in the 0.5 FiO2 group. Shunt fraction increased in both groups during anesthesia attaining statistical significance at varying times. Shunt fraction was significantly increased in both groups 10 min after anesthesia but was not different between groups. Alveolar dead space ventilation increased after 3 hr of anesthesia in both groups.Conclusions
Reducing FiO2 did not change alveolar dead space ventilation or shunt fraction in dorsally recumbent, mechanically ventilated horses during 3 hr of isoflurane anesthesia. Reducing FiO2 in dorsally recumbent isoflurane anesthetized horses does not improve oxygenation or oxygen delivery. 相似文献20.
Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. 总被引:22,自引:0,他引:22
K W Park H T Cheong L Lai G S Im B Kühholzer A Bonk M Samuel A Rieke B N Day C N Murphy D B Carter R S Prather 《Animal biotechnology》2001,12(2):173-181
The ability to add or delete specific genes in swine will likely provide considerable benefits not just to agriculture but also to medicine, where pigs have potential as models for human disease and as organ donors. Here we have transferred nuclei from a genetically modified fibroblast cell line to porcine oocytes, matured in vitro under defined culture conditions, to create piglets expressing enhanced green fluorescent protein. The nuclear transfer-derived piglets were of normal size, although some mild symptoms of "large offspring syndrome" were evident. These experiments represent a next step towards creating swine with more useful genetic modifications. 相似文献