首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have recently reported that bombesin (BBS)-stimulated gastrin release is principally dependent on a Ca2+/calmodulin intracellular pathway, and that it is independent of the cyclic AMP-mediated pathway. Recently it was demonstrated that stimulation of protein kinase C (PK-C) resulted in increased gastrin release from the isolated canine G-cells in cultures. The role of PK-C in the BBS-evoked gastrin release, however, remains unexamined. In this study we examined a possible role of PK-C in the secretion of BBS-stimulated gastrin from isolated perfused rat stomach. The effect of phosphorylation on gastrin release, in response to BBS, was also determined. Administration of phorbol ester (PMA 10-100 nM, a PK-C activator) alone significantly provoked gastrin release, but markedly inhibited the BBS (1 nM) stimulated gastrin secretion in a dose-dependent manner. Molybdic acid (phosphatase inhibitor), caused an enhancement of BBS-evoked gastrin response at doses of 5 or greater than 5 mM. These results suggest that: (1) diacylglycerol/PK-C pathway may exert a negative feedback control over BBS-induced gastrin release; (2) phosphorylation step is required for gastrin secretion in response to BBS.  相似文献   

2.
The effect of gamma-aminobutyric acid (GABA) on basal and bombesin (BBS)-stimulated release of somatostatin (SLI) and gastrin from isolated perfused rat stomach was examined. In the control study, BBS at a dose of 10 nM significantly stimulated release of SLI and gastrin. Infusion of GABA (1-1000 nM) caused a depression of SLI release induced by BBS (10 nM) in a dose-dependent fashion. However, at doses used in this study GABA had no effect on either basal level of SLI and gastrin or BBS-elicited gastrin release. These results indicate that GABA can specifically modulate BBS-induced SLI release from rat stomach.  相似文献   

3.
Gastric somatostatin release from the isolated rat stomach was studied using a perfusion technique. Somatostatin released from the isolated perfused rat stomach was found to be identical in molecular size and immunoreactively with synthetic somatostatin. Infusion of glucagon (10?7 M) caused biphasic increase of gastric somatostatin release. Gastric somatostatin release was also stimulated by infusion of theophylline (10?3 M) and dibutyryl cyclic AMP (10?3 M). These results indicate the possible involvement of adenylate cyclase-cyclic AMP system in the regulatory mechanism of gastric somatostatin release.  相似文献   

4.
We have studied the role of vitamin D in the regulation of gastrin and gastric somatostatin secretion from the isolated perfused rat stomach. In Ca-deficient vitamin D-deficient rats (Ca(-)D(-) group), the basal and bombesin-stimulated gastrin and gastric somatostatin release (basal IRGa, basal IRS, sigma delta IRGa, and sigma delta IRS) all were significantly lower than in Ca-replete vitamin D-replete rats (Ca(+)D(+) group), and also lower than in Ca-replete vitamin D-deficient rats (Ca(+)D(-) group) except for the basal IRGa. In the Ca(+)D(-) group, the basal IRGa and IRS, and sigma delta IRS were not significantly lower than in the Ca(+)D(+) group. Although there was no significant impairment in basal IRGa, sigma delta IRGa in the Ca(+)D(-) group was significantly lower than in the Ca(+)D(+) control group. Thus, the gastrin and gastric somatostatin secretion from the Ca-deficient vitamin D-deficient rats were impaired. In addition, the impaired gastrin and gastric somatostatin secretions seem to be caused not only by a decrease in serum Ca but also by the reduced effect of the vitamin D on the G and gastric D cells.  相似文献   

5.
H Koop  R Arnold 《Regulatory peptides》1984,9(1-2):101-108
The influence of exogenous serotonin on the secretion of gastric somatostatin and gastrin was investigated under in vitro conditions using an isolated, vascularly perfused rat stomach preparation. Serotonin stimulated gastrin release, maximal effects were observed at 10(-6) M which increased gastrin levels by 78%; on the contrary, somatostatin secretion was inhibited (maximal inhibition of 56% at 10(-6) M). Changes in hormone secretion in response to serotonin were reversed by combined blockade of 5-HT1 and 5-HT2 receptors by methysergide and blockade of 5-HT2 receptors by ketanserin (10(-5) and 10(-6) M, respectively), and of cholinoreceptors by atropine (10(-5) M). It is concluded that in rats in vitro serotonin inhibits release of gastric somatostatin and stimulates gastrin secretion via specific serotonin receptors but muscarinic cholinergic receptors are also involved.  相似文献   

6.
Galanin has been shown to be present in the gastrointestinal tract, pancreas and CNS. In the rat stomach, immunohistochemical studies have revealed the presence of galanin in the intrinsic nervous system suggesting a function as putative neurotransmitter or neuromodulator which could affect neighbouring exo- or endocrine cells. Therefore this study was performed to determine the effect of galanin on the secretion of gastrin and somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach. The stomach was perfused via the celiac artery and the venous effluent was collected from the portal vein. The luminal content was kept at pH 2 or 7 Galanin at a concentration of 10(-10), 10(-9) and 10(-8) M inhibited basal gastrin release by 60-70% (60-100 pg/min; p less than 0.05) at luminal pH 7. At luminal pH 2 higher concentrations of galanin (10(-9) and 10(-8) M) decreased basal gastrin secretion by 60-70% (60-100 pg/min; p less than 0.05). This inhibitory effect was also present during infusion of neuromedin-C, a mammalian bombesin-like peptide that stimulates gastrin release. SLI secretion remained unchanged during galanin administration. The inhibitory action of galanin on gastrin secretion was also present during the infusion of tetrodotoxin suggesting that this effect is not mediated via neural pathways. The present data demonstrate that galanin is an inhibitor of basal and stimulated gastrin secretion and has to be considered as an inhibitory neurotransmitter which could participate in the regulation of gastric G-cell function.  相似文献   

7.
Secretion of somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach has been shown to be inhibited by substance P. The present study was initiated to examine the possibility that this action of substance P was mediated via release of histamine. Substance P (1 microM) reduced basal secretion of SLI in agreement with earlier studies. Neither pyrilamine nor cimetidine influenced this action. Basal immunoreactive gastrin (IRG) secretion was unaffected by substance P. Addition of pyrilamine during substance P perfusion increased IRG secretion whereas addition of cimetidine resulted in a delayed decrease on removal of both compounds. Histamine (1 and 10 microM) increased SLI secretion and reduced IRG secretion. Pyrilamine increased and cimetidine decreased IRG secretion but neither drug influenced SLI secretion. Pyrilamine had no effect on histamine-stimulated SLI secretion but inhibition of IRG secretion by histamine was converted to stimulation. Cimetidine potentiated histamine stimulation of SLI secretion and inhibition of IRG secretion. In conclusion: (1) substance P inhibition of SLI secretion is unlikely to be mediated via release of histamine. (2) The gastrin cell appears to have both H1- and H2-receptors which mediate opposite actions but H1-receptor-mediated inhibition is predominant. (3) Histamine weakly stimulates SLI secretion but there may be both inhibitory and stimulatory pathways acting via H2- and H1-receptors, respectively.  相似文献   

8.
9.
The effect of secretin on acid and pepsin secretion and gastrin release in the totally isolated vascularly perfused rat stomach was studied. With the phosphodiesterase inhibitor isobutyl methylxanthine (IMX) added to the vascular perfusate, baseline acid secretion was 4.7 +/- 1.1 (mean +/- S.E.M.) mumol/h and baseline pepsin output 1147 +/- 223 micrograms/h. Secretin significantly inhibited acid output to a minimum of 1.4 +/- 0.2 mumol/h at a concentration of 25 pM in the vascular perfusate (P less than 0.01). Pepsin output was not significantly different from baseline at any of the secretin doses tested. Threshold secretin concentration for acid inhibition was 5 pM. IMX stimulated gastrin output from 48 +/- 9 pM in the basal state to 95 +/- 13 pM after IMX (P less than 0.01). Secretin inhibited gastrin release only at the maximal dose of 625 pM, when gastrin concentration in the venous effluent decreased from 93 +/- 19 to 68 +/- 19 pM after secretin. Thus, in the totally isolated vascularly perfused rat stomach secretin in physiological concentrations inhibits acid secretion by a direct action on the acid secretory process and not via gastrin inhibition. The study also suggests that gastrin release at least in part is mediated via increased intracellular cAMP.  相似文献   

10.
B Saffouri  G Weir  K Bitar  G Makhlouf 《Life sciences》1979,25(20):1749-1753
The effect of a high capacity somatostatin antiserum on antral gastrin secretion was examined in an isolated vascularly perfused rat stomach preparation. Infusion of somatostatin antiserum diluted 1:1 and 1:9 with Krebs buffer solution produced significant increases in gastrin secretion throughout the period of infusion. Neither infusion of somatostatin antiserum diluted 1:99 nor infusion of control rabbit serum had any effect on gastrin secretion. The data indicate that antral somatostatin excercises a continous restraint on gastrin secretion in the basal state.  相似文献   

11.
Ghrelin release in man depends on the macronutrient composition of the test meal. The mechanisms contributing to the differential regulation are largely unknown. To elucidate their potential role, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), insulin, gastrin and somatostatin were examined on isolated rat stomach ghrelin secretion, which offers the advantage of avoiding systemic interactions. Basal ghrelin secretion was in a range that did not permit to consistently evaluate inhibiting effects. Therefore, the effect of gastrointestinal hormones and insulin was analyzed during vagal prestimulation. GLP-1(7-36)amide 10(-8) and 10(-7) M decreased ghrelin secretion significantly. In contrast, GIP 10(-8) and 10(-7) M augmented not only prestimulated, but also basal ghrelin secretion (p<0.05). Insulin reduced ghrelin at 10(-10), 10(-8) and 10(-6) M (p<0.05). Both gastrin 10(-8) M and somatostatin 10(-6) M also significantly inhibited ghrelin secretion. These data demonstrate that GLP-1(7-36)amide, insulin, gastrin and somatostatin are potential candidates to contribute to the postprandially observed inhibition of ghrelin secretion with insulin being the most effective inhibitor in this isolated stomach model. GIP, on the other hand, could attenuate the postprandial decrease. Because protein-rich meals do not effectively stimulate GIP release, other as yet unknown intestinal factors must be responsible for protein-induced stimulation of ghrelin release.  相似文献   

12.
The present study has been performed to test for cell volume regulatory potassium release from the isolated perfused rat kidney exposed to hypotonic perfusate and for its sensitivity to potassium channel blocker barium and calcium channel blocker verapamil. Replacement of 25 mmol/l NaCl with 50 mmol/l mannitol has little effect on effluent potassium activity, whereas subsequent omission of mannitol from the perfusate leads to a transient increase of effluent potassium activity, reflecting volume regulatory potassium release. Barium (1 mmol/l) leads to a marked transient decrease of effluent potassium activity, pointing to net cellular uptake of potassium. Verapamil (1 mumol/l) leads to a slight decrease of effluent potassium activity. Both barium and verapamil virtually abolish the rapid, transient increase of effluent potassium activity upon exposure to hypotonic perfusates. Thus, the substances either block or markedly retard volume regulatory potassium release. The apparent renal vascular resistance is transiently increased by exposure to hypotonic perfusates and by barium, but is reduced by verapamil. Cell volume regulation of isolated perfused mouse straight proximal tubules is retarded but not abolished by verapamil (0.1 mmol/l). In conclusion, cellular potassium release from rat kidney can be determined by continuous measurement of effluent potassium activity. The volume regulatory potassium release and cell volume regulation are impaired by both barium and verapamil. The persisting cell volume regulation could be due either to slow potassium release and/or some mechanism independent of potassium.  相似文献   

13.
Bombesin-like peptides as well as receptor-independent activators were tested for their effect on gastrin release from acutely dispersed rat gastric G-cells. The amphibian peptide bombesin as well as its mammalian analogues neuromedin B and neuromedin C stimulated gastrin release. Maximal responses were achieved with 10(-9) M bombesin (191.0 +/- 16.8% of basal release), 10(-8) M neuromedin C(205.9 +/- 17.6%) and 10(-7) M neuromedin B (162.2 +/- 10.4%), respectively. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and the synthetic diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) are receptor-independent activators of the protein kinase C. Both TPA (10(-6) M) and OAG (10(-5) M) stimulated gastrin release to 214.0 +/- 29.3% and 198.2 +/- 20.8% of basal, respectively. Calcium ionophore A23187 (10(-5) M) was the most effective stimulant tested (364.7 +/- 39.6%). Its effect was reversed by the calmodulin antagonist W 7 (10(-6)-10(-5) M). Finally, forskolin (10(-5) M), a direct activator of cAMP-formation, as well as the cAMP-analogue dbcAMP (10(-3) M) induced gastrin release. IN conclusion, neuromedin B is less potent and less effective than neuromedin C and bombesin in stimulating rat gastric G-cells. In addition, gastrin release is activated by calcium- and phospholipid-dependent as well as by cAMP-induced cellular signal transduction mechanisms.  相似文献   

14.
The isolated stomach of rats was vascularly perfused to measure the secretion of gastrin, somatostatin (SLI) and bombesin-like immunoreactivity (BLI). The gastric lumen was perfused with saline pH 7 or pH 2, and electrical vagal stimulation was performed with 1 ms, 10 V and 2, 5 or 10 Hz, respectively. Atropine was added in concentrations of 10−9 or 10−7 M to evaluate the role of cholinergic mechanisms. In control experiments, vagal stimulation during luminal pH 2 elicited a significant increase of BLI secretion only at 10 Hz but not at 2 and 5 Hz. Somatostatin release was inhibited independent of the stimulation frequency employed. Gastrin secretion at 2 Hz was twice the secretion rates observed at 5 and 10 Hz, respectively. At luminal pH 7 BLI rose significantly at 5 and 10 Hz. SLI secrtion was decreased by all frequencies. Gastrin secretion at 2 and 5 Hz was twice as high as during stimulation with 10 Hz. Atropine at doses of 10−9, 10−8, 10−7 and 10−6 M had no effect on basal secretion of BLI, SLI and gastrin. At luminal pH 2, atropine increased dose-dependently the BLI response at 2 and 5 but not at 10 Hz. The decrease of SLI during 2 and 5 Hz but not 10 Hz was abolished by atropine 10−9 M. SLI was reversed to stimulation during atropine 10−7 M at all frequencies. The rise of gastrin at 2 Hz was reduced by 50%. At luminal pH 7, atropine had comparable effects with a few differences: the BLI response at 10 Hz was augmented and the gastrin response to 2 and 5 Hz was reduced. In conclusion the present data demonstrate a frequency and pH-dependent stimulation of BLI and gastrin release. The stimulation of BLI is predominantly due to atropine-insensitive mechanisms while muscarinic cholinergic mechanisms exert an inhibitory effect on BLI release during lower stimulation frequencies (2 and 5 Hz) independent of the intragastric pH and also during higher frequencies at neutral pH. Both, atropine sensitive and insensitive mechanisms are activated frequency dependent. The atropine-sensitive cholinergic mechanisms but not the noncholinergic mechanisms involved in regulation of G-cell function are pH and frequency dependent. Somatostatin is regulated largely independent of stimulation frequency and pH by at least two pathways involving cholinergic mechanisms of different sensitivity to atropine. These data suggest a highly differentiated regulation of BLI, gastrin and SLI secretion and the interaction between these systems awaits further elucidation.  相似文献   

15.
Cysteamine-induced duodenal ulceration in rats is accompanied by increased circulating gastrin. Although cysteamine appears to exert a direct action on the gastrin cell some groups have provided evidence for an involvement of the autonomic nervous system. The current experiments were performed to determine whether beta-adrenergic or cholinergic (muscarinic) pathways are involved in the acute effect of cysteamine on gastrin secretion in the isolated perfused rat stomach. Cysteamine (1 mM) increased gastrin (IRG) secretion to a maximum ranging between 100% and 192% above basal. A cysteamine concentration of 5mM resulted in peak levels ranging between 150% and 1050% above basal. Addition of atropine or propranalol did not influence the responses obtained. The present results, therefore, do not support a role for either cholinergic or beta-adrenergic pathways in cysteamine-induced gastrin release at the level of the stomach and suggest that in vivo such autonomic effects are mediated extrinsically.  相似文献   

16.
In the present study the release of bombesin-like immunoreactivity (BLI), somatostatin and gastrin was determined form the isolated perfused rat stomach. Gastric inhibitory polypeptide (GIP, 2 X 10(-9) M) had no effect on BLI while stimulating somatostatin and gastrin release. In these experiments the luminal pH of the stomach was kept at pH 7. Reduction of the luminal pH to 2 resulted in an inhibition of BLI secretion by GIP while gastrin release was abolished and somatostatin remained unaffected compared to luminal pH 7. Acetylcholine (10(-6) and 2 X 10(-6) M) elicited a dose-dependent stimulation of BLI secretion while gastrin was stimulated and somatostatin secretion suppressed independent of the administered dose. The present data demonstrate that release of bombesin-like immunoreactivity can be modulated by intestinal hormones and neurotransmitters and is integrated into the complex system of gastrointestinal neuroendocrine regulation.  相似文献   

17.
Effect of TPA (12-O-tetradecanoyl phorbol-13-acetate), a potent tumor promoter, on immunoreactive somatostatin release was investigated using the isolated perfused rat stomach. TPA at the concentration as low as 20nM significantly stimulated the somatostatin release from isolated perfused rat stomach. The integrated net output of somatostatin induced by TPA was dose-dependent in a range of 5 - 50nM TPA. Since TPA is known to activate C-kinase specifically at a low dose (less than 20nM), these findings suggest that C-kinase system may be involved in the regulation of somatostatin release in rat stomach.  相似文献   

18.
The effects of naloxone, an opiate antagonist, on basal and vagus nerve-induced secretions of GRP, gastrin, and somatostatin were examined using the isolated perfused rat stomach prepared with vagal innervation. Naloxone (10(-6) M) significantly inhibited basal somatostatin secretion in the presence and absence of atropine and of hexamethonium, whereas basal GRP and gastrin secretion was not affected by naloxone. Electrical stimulation (10 Hz, lms duration, 10V) of the distal end of the subdiaphragmatic vagal trunks elicited a significant increase in both GRP and gastrin but a decrease in somatostatin. Naloxone (10(-6) M) failed to affect these responses in the presence or absence of atropine. On the other hand, when hexamethonium was infused, naloxone significantly inhibited both the GRP and gastrin responses to electrical vagal stimulation. Somatostatin secretion was unchanged by vagal stimulation during the infusion of hexamethonium with or without naloxone. These findings suggest that basal somatostatin secretion is under the control of an opiate neuron and that opioid peptides might be involved in vagal regulation of GRP and gastrin secretion.  相似文献   

19.
The mechanisms regulating the release of serotonin into the portal circulation as well as into the gastric lumen were studied in the isolated vascularly and luminally perfused rat stomach. Immunohistochemical study of the rat stomach showed that serotonin-containing enterochromaffin (EC) cells were densely packed in the antral mucosa, sparsely scattered in the corpus, and not found in the fundus. Such morphological findings suggest that serotonin detected in this study may have originated from antral EC cells. Luminal acidification stimulated the vascular release of serotonin but did not affect the luminal release of serotonin. The basal release of serotonin into the vasculature was 10 times higher than that into the gastric lumen at intragastric pH 2. The vascular release of serotonin is regulated by stimulation from cholinergic nicotinic mechanisms, whereas inhibitory neurotransmitters such as vasoactive intestinal peptide and NO are probably not involved. Somatostatin and peptide YY originating from endocrine cells may exert direct inhibitory effects, possibly via somatostatin and peptide YY receptors on the EC cells, and a cholinergic muscarinic mechanism may exert indirect effects on the vascular release of serotonin via the muscarinic receptor on the endocrine cells.  相似文献   

20.
Bombesin-like immunoreactivity (BLI) has been demonstrated in neurons of the gastrointestinal tract and gastric BLI secretion can be demonstrated in response to the classical neurotransmitter acetylcholine. Since structurally related peptides VIP, PHI and GRF have to be considered as peptidergic neurotransmitters it was of interest to determine their effect on gastric BLI secretion. Additionally, somatostatin (SLI) and gastrin secretion was examined. The isolated stomach of overnight fasted rats was perfused with Krebs-Ringer buffer via the celiac artery and the effluent was collected via the portal vein. The gastric lumen was perfused with isotonic saline at pH7 or pH2. All four peptides were tested at a dose of 10(-11) M and 10(-8) M at both pH levels and in addition the effect of VIP and PHI was examined at 10(-14) M and 10(-12) M during luminal pH2. At luminal pH7 VIP and PHI stimulated SLI release at 10(-8) M but had no effect on BLI or gastrin secretion. rGRF and hpGRF were both ineffective on SLI and gastrin release while rGRF inhibited and hpGRF stimulated BLI secretion. This effect was not dose related. At luminal pH2 all four peptides stimulated BLI secretion. Stimulation by PHI was already observed at a dose of 10(-14) M while VIP elicited a stimulatory effect at 10(-12) M. PHI at the two lowest concentrations of 10(-14) and 10(-12) M elicited a stimulation of SLI and gastrin release while the same doses of VIP and the higher doses of all four peptides had no effect on SLI and gastrin secretion at an acidic intraluminal pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号