首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of the ‘therevoid’ clade, with an emphasis on window flies (Scenopinidae), is presented by combining DNA sequence data with morphological characters for living and fossil species. The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. A comprehensive phylogenetic analysis using parsimony and likelihood methods was undertaken using extensive taxon sampling from all families and subfamilies, and compared with outgroup taxa sampled from the related families Asilidae, Mydidae, Apioceridae and Empididae. Fifty‐nine morphological characters (adult, larval and pupal) were combined with 6.4 kb of DNA sequences for two ribosomal genes (16S and 18S ribosomal DNA) and three protein‐encoding genes [cytochrome oxidase I (COI), triose phosphate isomerase (TPI) and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase (CAD)]. Results from combined analyses of morphological and molecular data for 78 taxa representing all families of the therevoid clade are presented. Specific hypotheses of the relationship between respective families and subfamilies were tested statistically using four‐cluster likelihood mapping. The therevoid clade is a well‐supported monophyletic group within Asiloidea, with Evocoidae sister to Apsilocephalidae and Therevidae sister to Scenopinidae. Temporal and zoogeographical aspects of therevoid clade evolution were investigated using Bayesian divergence time estimates and Lagrange ancestral range scenarios. The effect of inclusion of fossils as terminal taxa on phylogenetic and divergence time estimation was investigated, with morphological scoring for fossil representatives included in the analyses rather than used simply as minimum age constraints. In each analysis there was either improvement in estimation, or only marginal and localized loss in tree resolution, and with younger estimates of divergence time across the tree. The historical biogeography of the therevoid clade was examined with multiple trans‐Antarctic vicariance events between Australasia and South America evident during the Late Cretaceous to early Palaeogene. Scenopininae is newly subdivided into two tribes, Metatrichini trib.n. and Scenopinini Fallén stat.r. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:4974EBF8‐3117‐4189‐B6DE‐7D5BF9B23E53 .  相似文献   

2.
The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. The largest of these families is that of the stiletto flies (Therevidae). A large‐scale (i.e. supermatrix) phylogeny of Therevidae is presented based on DNA sequence data from seven genetic loci (16S, 18S and 28S ribosomal DNA and four protein‐encoding genes: elongation factor 1‐alpha, triose phosphate isomerase, short‐wavelength rhodopsin and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase). Results are presented from Bayesian phylogenetic analyses of approximately 8.7 kb of sequence data for 204 taxa representing all subfamilies and genus groups of Therevidae. Our results strongly support the sister‐group relationship between Therevidae and Scenopinidae, with Apsilocephalidae as sister to Evocoidae. Previous estimates of stiletto fly phylogeny based on morphology or DNA sequence data, or supertree analysis, have failed to find significant support for relationships among subfamilies. We report for the first time strong support for the placement of the subfamily Phycinae as sister to the remaining Therevidae, originating during the Mid Cretaceous. As in previous studies, the sister‐group relationship between the species‐rich subfamilies Agapophytinae and Therevinae is strongly supported. Agapophytinae are recovered as monophyletic, inclusive of the Taenogera group. Therevinae comprise the bulk of the species richness in the family and appear to be a relatively recent and rapid radiation originating in the southern hemisphere (Australia + Antarctica + South America) during the Late Cretaceous. Genus groups are defined for all subfamilies based on these results.  相似文献   

3.
With over 80 000 described species, Brachycera represent one of the most diverse clades of organisms with a Mesozoic origin. Larvae of the majority of early lineages are detritivores or carnivores. However, Brachycera are ecologically innovative and they now employ a diverse range of feeding strategies. Brachyceran relationships have been the subject of numerous qualitative analyses using morphological characters. These analyses are often based on characters from one or a few character systems and general agreement on relationships has been elusive. In order to understand the evolution of basal brachyceran lineages, 101 discrete morphological characters were scored and compiled into a single data set. Terminals were scored at the family level, and the data set includes characters from larvae, pupae and adults, internal and external morphology, and male and female terminalia. The results show that all infraorders of Brachycera are monophyletic, but there is little evidence for relationships between the infraorders. Stratiomyomorpha, Tabanomorpha, and Xylophagomorpha together form the sister group to Muscomorpha. Xylophagomorpha and Tabanomorpha are sister groups. Within Muscomorpha, the paraphyletic Nemestrinoidea form the two most basal lineages. There is weak evidence for the monophyly of Asiloidea, and Hilarimorphidae appear to be more closely related to Eremoneura than other muscomorphs. Apsilocephalidae, Scenopinidae and Therevidae form a clade of Asiloidea. This phylogenetic evidence is consistent with the contemporaneous differentiation of the main brachyceran lineages in the early Jurassic. The first major radiation of Muscomorpha were asiloids and they may have diversified in response to the radiation of angiosperms in the early Cretaceous.  相似文献   

4.
Therevidae (stilleto flies) are a little-known family of asiloid brachyceran Diptera (Insecta). Separate and combined phylogenetic analyses of 1200 bases of the 28S ribosomal DNA and 1100 bases of elongation factor-1α were used to infer phylogenetic relationships within the family. The position of the enigmatic taxon Apsilocephala Kröber is evaluated in light of the molecular evidence. In all analyses, molecular data strongly support the monophyly of Therevidae, excluding Apsilocephala, and the division of Therevidae into two main clades corresponding to a previous classification of the family into the subfamilies Phycinae and Therevinae. Despite strong support for some relationships within these groups, relationships at the base of the two main clades are weakly supported. Short branch lengths for Australasian clades at the base of the Therevinae may represent a rapid radiation of therevids in Australia.  相似文献   

5.
Abstract.  The genus Cretoseguya , gen.n. , is described for C. burmitica , sp.n. , based on a female found in mid-Cretaceous amber from Myanmar. Valeseguya Colless was classified previously as a subfamily of the 'woodgnats', family Mycetobiidae (Anisopodoidea). Thoracic and male terminalia morphology of Valeseguya rieki Colless, from the Recent of Australia, and V. disjuncta Grimaldi, in Miocene amber from the Dominican Republic, are redescribed. The new family Valeseguyidae includes two species in Valeseguya and one in Cretoseguya . Phylogenetic analysis of characters on the head, wing (venation), legs, terminalia and, especially, thoracic pleural sclerites indicate that the correct placement of the family is as the sister group to the 'scavenger gnats' Scatopsidae + Canthyloscelidae (including Synneuron ). The concept and definition of Scatopsoidea are expanded to include these three families.  相似文献   

6.
Therevidae (stilleto flies) are a little-known family of asiloid brachyceran Diptera (Insecta). Separate and combined phylogenetic analyses of 1200 bases of the 28S ribosomal DNA and 1100 bases of elongation factor-1alpha were used to infer phylogenetic relationships within the family. The position of the enigmatic taxon Apsilocephala Kr?ber is evaluated in light of the molecular evidence. In all analyses, molecular data strongly support the monophyly of Therevidae, excluding Apsilocephala, and the division of Therevidae into two main clades corresponding to a previous classification of the family into the subfamilies Phycinae and Therevinae. Despite strong support for some relationships within these groups, relationships at the base of the two main clades are weakly supported. Short branch lengths for Australasian clades at the base of the Therevinae may represent a rapid radiation of therevids in Australia.  相似文献   

7.
Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: 'Psocoptera') were inferred from partial sequences of the nuclear 18S rDNA and Histone 3 and mitochondrial 16S rDNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipsocidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder. Character states previously used to diagnose Psocathropetae are shown to be plesiomorphic. The sister group relationship between Psyllipsocidae and Atropetae was supported by two morphological apomorphies: the presence of a paraproctal anal spine and an anteriorly opened phallosome. Based on these sequence data and morphological observations, we propose a new classification scheme for the Trogiomorpha as follows: infraorder Prionoglaridetae (Prionoglarididae), infraorder Psyllipsocetae (Psyllipsocidae), infraorder Atropetae (Lepidopsocidae, Trogiidae, Psoquillidae).  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 287–299.  相似文献   

8.
Magnoliales, consisting of six families of tropical to warm-temperate woody angiosperms, were long considered the most archaic order of flowering plants, but molecular analyses nest them among other eumagnoliids. Based on separate and combined analyses of a morphological matrix (115 characters) and multiple molecular data sets (seven variable chloroplast loci and five more conserved genes; 14 536 aligned nucleotides), phylogenetic relationships were investigated simultaneously within Magnoliales and Myristicaceae, using Laurales, Winterales, and Piperales as outgroups. Despite apparent conflicts among data sets, parsimony and maximum likelihood analyses of combined data converged towards a fully resolved and well-supported topology, consistent with higher-level molecular analyses except for the position of Magnoliaceae: Myristicaceae + (Magnoliaceae + (( Degeneria + Galbulimima ) + ( Eupomatia + Annonaceae))). Based on these results, we discuss morphological evolution in Magnoliales and show that several supposedly plesiomorphic traits are synapomorphies of Magnoliineae, the sister group of Myristicaceae (e.g. laminar stamens). Relationships within Annonaceae are also resolved with strong support ( Anaxagorea basal, then ambavioids). In contrast, resolution of relationships within Myristicaceae is difficult and still incomplete, due to a very low level of molecular divergence within the family and a long stem lineage. However, our data provide good evidence that Mauloutchia is nested among other Afro-Malagasy genera, contradicting the view that its androecium and pollen are plesiomorphic  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 125–186.  相似文献   

9.
Doradidae is a putatively monophyletic group of South American freshwater catfishes containing 30 extant genera and 72 valid species. Only one study to date has attempted to estimate phylogenetic relationships among doradids. This morphological analysis partitioned species into two basal genera ( Wertheimeria and Francisodoras ) and a crown group of three subfamilies (Platydoradinae, Astrodoradinae and Doradinae) whose relationships were unresolved. No subsequent work has been done to resolve the subfamilial trichotomy or to assess whether postulated intergeneric relationships are accurate. We address this problem with complete sequences (2.5 kilobases, kb) of mitochondrial 12S and 16S rRNA genes and partial (1.3 kb) sequences of the nuclear elongation factor-1 alpha (EF1α) gene from representatives of 23 doradid genera (43 species) and 13 outgroups from additional siluriform families. Phylogenetic analysis of these data yields strong support for the monophyly of Doradidae and Astrodoradinae (as well as other relationships), but otherwise shows significant conflict with morphological results. A partial re-examination of published morphological data indicates that many characters may have been incorrectly polarized and many taxa have incorrect state assignments. Our results provide a framework for ongoing efforts to describe the species-level diversity of this poorly understood neotropical family.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 551–575.  相似文献   

10.
The phylogeny of the Giant Pill-Millipedes, order Sphaerotheriida, is investigated using a new morphological character matrix comprising 89 characters. The majority of these characters are employed for the first time in millipedes. All trees obtained agree on the monophyletic status of the Sphaerotheriida and several of its tribes, each restricted to a modern land mass. The species from Madagascar displaying island gigantism do not form a monophyletic group. The classic division of Giant Pill-Millipedes into two families, Sphaerotheriidae and Zephronidae, was not reflected in the analysis. The genus Procyliosoma is the sister-group to all other Sphaerotheriida, rendering the family Sphaerotheriidae paraphyletic. A new family-level classification of Giant Pill-Millipedes, based on the current phylogeny, is introduced. The new family Procyliosomatidae contains only the genus Procyliosoma , distributed in Australia and New Zealand. The family Zephronidae remains unchanged, while the family Sphaerotheriidae now incorporates only the African Giant Pill-Millipede genera. All genera from southern India and Madagascar form a monophyletic group and are placed in the new family Arthrosphaeridae. The Malagasy genus Sphaeromimus is more closely related to the Indian Arthrosphaera species than to other genera from Madagascar. A biogeographical analysis identifies the group as a Gondwana taxon (with a notable absence from South America). The current phylogeny of Giant Pill-Millipede families mirrors perfectly the suggested break-up of Gondwana fragments 160–90 Ma. No evidence for a dispersal event could be found, highlighting the importance of Giant Pill-Millipedes as a potential model taxon.  相似文献   

11.
We present phylogenetic analyses of Malpighiales, which are poorly understood with respect to relationships within the order, using sequences from rbcL, atpB, matK and 18SrDNA from 103 genera in 23 families. From several independent and variously combined analyses, a four-gene analysis using all sequence data provided the best resolution, resulting in the single most parsimonious tree. In the Malpighiales [bootstrap support (BS) 100%], more than eight major clades comprising a family or group of families successively diverged, but no clade containing more than six families received over 50% BS. Instead, ten terminal clades that supported close relationships between and among families (>50% BS) were obtained, between, for example, Balanopaceae and Chrysobalanaceae; Lacistemataceae and Salicaceae; and Phyllanthaceae and Picrodendraceae. The monophyly of Euphorbiaceae sens. str. were strongly supported (BS 100%), but its sister group was unclear. Euphorbiaceae sens. str. comprised two basally diverging clades (BS 100%): one leading to the Clutia group (Chaetocarpus, Clutia, Pera and Trigonopleura), and the other leading to the rest of the family. The latter shared a palisadal, instead of a tracheoidal exotegmen as a morphological synapomorphy. While both Acalyphoideae (excluding Dicoelia and the Clutia group) and Euphorbioideae are monophyletic, Crotonoideae were paraphyletic, requiring more comprehensive analyses.  相似文献   

12.
Ichneumonoid phylogeny is revised on the basis of morphological, palaeontological and molecular evidence. The only previous formal cladistic study of the phylogeny of the families of the superfamily Ichneumonoidea made many assumptions about what families lower taxa belonged to and was based on a very limited set of characters, nearly all of which were uninformative at family level. We have subdivided both Ichneumonidae and Braconidae into major groups, investigated several new character systems, reinterpreted some characters, scored several character states for extinct taxa by examining impression fossils using environment chamber scanning electron microscopy, and included data for a significant new subfamily of Braconidae from Cretaceous amber of New Jersey. Sixteen different variants of the data set were each subjected to parsimony analysis without weighting and with successive approximations weighting employing both maximum and minimum values of both the retention and rescaled consistency indices. Each analysis resulted in one of seven different strict consensus trees. Consensus trees based on subsets of these trees, selected on the basis of the optimal character compatibility index (OCCI), resulted in an eighth distinct tree. All trees had the Braconidae monophyletic with the Trachypetinae as the basal clade, and also had a clade comprising various arrangements of Apozyginae, the Rhyssalinae group, Aphidiinae and 'other cyclostomes', but relationships among the remaining braconid groups varied between trees. Only one of the consensus trees had the Ichneumonidae (including Tanychorella ) monophyletic. The Eoichneumonidae + Tanychora are the sister group the Braconidae in two of the consensus trees. Paxylommatinae were basal in the clade comprising the Eoichneumonidae + Tanychora and the Braconidae. The preferred tree, based on the highest OCCI was used for interpreting character state transitions.  相似文献   

13.
In a previous study of the phylogeny of basal Hymenoptera, Vilhelmsen (2001; Zool. J. Linn. Soc . 131 : 393–442) compiled an extensive morphological data matrix for a phylogenetic analysis of basal Hymenoptera, comprising 38 hymenopteran genera. In this study, his characters are revised. This results in a cladogram whose relationships largely agree with those proposed by Vilhelmsen, except that the relationships at the base of the Hymenoptera are unresolved. The revised data matrix is expanded by 17 sawfly and three apocritan taxa. Moreover, 112 new morphological characters from different parts of the larval and adult morphology are also added to the data matrix, including 82 from a recent study of the terminal abdominal segments of male Hymenoptera. The addition of the new characters leads to Xyelidae, again, being the sister-group of all other Hymenoptera. The relationships among the sawfly families as proposed by Vilhelmsen are confirmed, except that the relationships among Syntexis , Siricidae and Xiphydriidae + Vespina are unresolved and that the monophyly of Apocrita is not convincingly supported. A separate analysis is performed which includes all extant genera of Xyelidae. The internal phylogeny of Xyelidae is determined as (( Macroxyela Megaxyela ) Xyelecia ( Xyela Pleroneura )).  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 209–243.  相似文献   

14.
The suborder Amblycera (Insecta: Phthiraptera) comprises seven recognized families of parasitic lice. Three of these families (the Menoponidae, Laemobothriidae and Ricinidae) are present on a wide range of avian hosts. The four remaining families are restricted to a small section of mammals (the Boopiidae are parasites of Australian and New Guinean marsupials, and the Gyropidae, Trimenoponidae and Abrocomophagidae parasitize South and Central American rodents). This study uses a morphological approach to examine the evolutionary relationships between the genera from four amblyceran families: the Menoponidae, Boopiidae, Laemobothriidae and Ricinidae. Genera are represented by exemplars and a total of 44 louse taxa and one outgroup taxon were included. A cladistic analysis of 147 unordered characters recovered six equally parsimonious trees. Bootstrap, jackknife and Bremer support analyses were undertaken to assess the level of support for each resolved node in the strict consensus topology. Strong support was found for deep branch relationships between the families and in some cases for supra-generic groupings within families. The clades present in the strict consensus tree are discussed with reference to supra-generic and interfamily relationships, character choice, morphological convergence and host distribution. This study is the first phylogeny presented solely for amblyceran genera.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 138 , 39–82.  相似文献   

15.
We investigated the phylogenetic relationships of Family Asplanchnidae using both morphological and molecular data. The morphological database, comprising 23 characters from 19 taxa (15 Asplanchnidae and 4 outgroups), was compiled from a survey of the literature and our own observations; the molecular data (ITS and V4 region nuclear regions and mitochondrial cox1) was sequenced from specimens that we collected. Our analysis of the morphological data set (maximum parsimony) yielded 12 most-parsimonious trees with a tree length of 27 steps. From this analysis we conclude (1) Asplanchnidae is a monophyletic group as are the three genera comprising it, (2) there is no compelling support for the argument that Asplanchna should be separated into two discrete genera, and (3) there is some support for the proposal that Asplanchnidae and Synchaetidae are sister groups. Our analysis of the molecular data set supports the first two of these conclusions while the sister group of the family varied depending on the gene region analyzed and families and genera included. Current understanding of the phylogeny of Asplanchnidae is hampered by the need for additional informative morphological characters and a lack of molecular data for the genus Harringia and several other members of the Asplanchnidae.  相似文献   

16.
The land snail superfamily Orthalicoidea, although generally assumed to be of Gondwanan origin, is considered by the majority of recent authors to be absent from the African continent. However, two poorly-known African genera, Aillya and Prestonella , have historically been referred to the orthalicoid family Bulimulidae s.l. Anatomical study of Aillya has subsequently shown it to be morphologically distinct from the Bulimulidae and referable to a family of its own, outside the Orthalicoidea, but Prestonella has remained an enigmatic taxon of unknown affinity. Using molecular and morphological evidence, we demonstrate conclusively that Prestonella is indeed a member of the Bulimulidae s.l. We thus confirm that this family is represented in Africa, and that it has a classical disjunct, tri-continental southern distribution. Thus, either the origin of the family must at the least predate the separation of Africa and South America in the Mid Cretaceous (under a vicariance scenario) or there must have been subsequent dispersal between the isolated Gondwanan fragments. In view of the limited dispersal ability of terrestrial snails, we consider the former more likely. Anatomically, Prestonella exhibits many character states thought to be plesiomorphic, suggesting a relationship with the subfamily Bulimulinae. Bayesian analysis of nuclear DNA sequence data places it as sister group (posterior probability = 1.0) to an Australasian clade comprising Bothriembryon and Placostylus . However, taxon sampling within the Orthalicoidea is currently inadequate to permit meaningful resolution of subfamilial affinity using molecular data. Similarly, although those orthalicoid taxa for which molecular data are available comprise a well-supported clade, the relationships of this clade to other stylommatophoran clades remain unresolved.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 203–221.  相似文献   

17.

Background  

The order Tetraodontiformes consists of approximately 429 species of fishes in nine families. Members of the order exhibit striking morphological diversity and radiated into various habitats such as freshwater, brackish and coastal waters, open seas, and deep waters along continental shelves and slopes. Despite extensive studies based on both morphology and molecules, there has been no clear resolution except for monophyly of each family and sister-group relationships of Diodontidae + Tetraodontidae and Balistidae + Monacanthidae. To address phylogenetic questions of tetraodontiform fishes, we used whole mitochondrial genome (mitogenome) sequences from 27 selected species (data for 11 species were newly determined during this study) that fully represent all families and subfamilies of Tetraodontiformes (except for Hollardinae of the Triacanthodidae). Partitioned maximum likelihood (ML) and Bayesian analyses were performed on two data sets comprising concatenated nucleotide sequences from 13 protein-coding genes (all positions included; third codon positions converted into purine [R] and pyrimidine [Y]), 22 transfer RNA and two ribosomal RNA genes (total positions = 15,084).  相似文献   

18.
Abstract. One hundred and twenty-one morphological characters of larvae and adults of the series Staphyliniformia were scored (multistate coding) and analysed to determine the family group relationships of the polyphagan groups Scarabaeoidea, Histeroidea, Hydrophiloidea and Staphylinoidea. Cladograms were rooted with exemplars of Adephaga, Archostemata, Myxophaga and the polyphagan families Dascillidae, Derodontidae, Eucinetidae and Scirtidae. Analyses of the same dataset with multistate characters re-coded as presence/absence (144 characters) produced cladograms that were similar to those produced from analyses of the original characters. Cladograms produced from partitioned larval and adult characters differed strongly, with adult-only trees more similar to those produced by combined data. The results confirm the monophyly of Hydrophiloidea + Histeroidea and of Staphylinoidea (including Hydraenidae). The Epimetopidae + Georissidae are the only strongly supported clade within Hydrophiloidea. A clade comprising Hydrochidae, Spercheidae and Hydrophilidae, and a sister-group relationship between the latter two families were confirmed in analyses of the data with presence/absence coding. Helophoridae, Epimetopidae and Georissidae are probably not a monophyletic unit, and additional evidence is needed for a reliable placement of Helophoridae. Scarabaeoidea are placed as a sister taxon of Hydrophiloidea + Histeroidea, but support for this relationship is weak. The branching pattern ((Hydraenidae + Ptiliidae) + (Leiodidae + Agyrtidae)), and a clade comprising Scydmaenidae, Silphidae and Staphylinidae (= ‘staphylinid group’) are well founded. The branching pattern (Orchymontiinae + (Prosthetopinae + (Ochthebiinae + Hydraeninae))) within Hydraenidae is confirmed. Poor resolution at the base of the trees and the placement of some nonstaphyliniform taxa (Dascillidae, Derodontidae, Scirtidae and Eucinetidae) as a sister group to a clade comprising Scarabaeoidea, Hydrophiloidea and Histeroidea suggests that Staphyliniformia may be paraphyletic. It is recommended that series names are eliminated from the classification of Polyphaga, at least for the more ‘primitive’ groups.  相似文献   

19.
Molecular characters are analysed on their own and in combination with morphological data to examine the phylogenetic relationships of the basal lineages of Hymenoptera ('Symphyta'). This study covers 47 sawfly genera and nine apocritan families and includes molecular sequences from five genes − 12S, 16S, 18S and 28S ribosomal genes and cytochrome oxidase 1 − as well as 343 morphological characters. A robust-choice sensitivity analysis is performed with the data. First, the simultaneous analysis is repeated three times, each time employing a different step matrix for weighting the transformations of the molecular characters. Then, the results of all three simultaneous analyses are summarized in a strict consensus in order to avoid basing the conclusions on a narrow set of assumptions. This methodology is discussed in the paper. The relationships among superfamilies largely confirm previous hypotheses, being (Xyeloidea (Tenthredinoidea s.l. (Pamphilioidea (Cephoidea (Siricoidea (Xiphydrioidea (Orussoidea Apocrita))))))), where Siricoidea is understood as Siricidae+Anaxyelidae. However, the relationships within Tenthredinoidea s.s. proposed here are novel: ({Argidae Pergidae}[ Athalia {(Diprionidae Cimbicidae) Tenthredinidae minus Athalia }]).  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 79, 245–275.  相似文献   

20.
A data matrix is presented of 210 morphological characters (mostly osteological, some external) for 20 extant taxa of the ten Recent families of tetraodontiform fishes and 36 fossil tetraodontiforms. The oldest of these are from the Upper Cretaceous (95 Mya); most are from the Lower to Middle Eocene (50–58 Mya). There are two outgroup taxa (a zeiform and a caproid). A cladistic analysis of this matrix for only the extant taxa produced two equally parsimonious trees that call into question the monophyly of some of the previously accepted major higher-level tetraodontiform clades. Inclusion in the analysis of the large number of available fossil taxa helps to resolve relationships between family level clades. The new phylogenetic hypothesis, together with stratigraphic and biogeographical data, is used to discuss scenarios of the origin and evolution of the major clades of the order.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 139 , 565−617.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号