首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Active partition of the F plasmid to dividing daughter cells is assured by interactions between proteins SopA and SopB, and a centromere, sopC. A close homologue of the sop operon is present in the linear prophage N15 and, together with sopC-like sequences, it ensures stability of this replicon. We have exploited this sequence similarity to construct hybrid sop operons with the aim of locating specific interaction determinants within the SopA and SopB proteins that are needed for partition function and for autoregulation of sopAB expression. Centromere binding was found to be specified entirely by a central 25 residue region of SopB strongly predicted to form a helix-turn-helix structure. SopB protein also carries a species-specific SopA-interaction determinant within its N-terminal 45 amino acids, and, as shown by Escherichia coli two-hybrid analysis, a dimerization domain within its C-terminal 75 (F) or 97 (N15) residues. Promoter-operator binding specificity was located within an N-terminal 66 residue region of SopA, which is predicted to contain a helix-turn-helix motif. Two other regions of SopA protein, one next to the ATPase Walker A-box, the other C-terminal, specify interaction with SopB. Yeast two-hybrid analysis indicated that these regions contact SopB directly. Evidence for the involvement of the SopA N terminus in autoinhibition of SopA function was obtained, revealing a possible new aspect of the role of SopB in SopA activation.  相似文献   

6.
The SopA protein plays an essential, though so far undefined, role in partition of the mini-F plasmid but, when overproduced, it causes loss of mini-F from growing cells. Our investigation of this phenomenon has revealed that excess SopA protein reduces the linking number of mini-F. It appears to do so by disturbing the partition complex, in which SopB normally introduces local positive supercoiling upon binding to the sopC centromere, as it occurs only in plasmids carrying sopC and in the presence of SopB protein. SopA-induced reduction in linking number is not associated with altered sop promoter activity or levels of SopB protein and occurs in the absence of changes in overall supercoil density. SopA protein mutated in the ATPase nucleotide-binding site (K120Q) or lacking the presumed SopB interaction domain does not induce the reduction in linking number, suggesting that excess SopA disrupts the partition complex by interacting with SopB to remove positive supercoils in an ATP-dependent manner. Destabilization of mini-F also depends on sopC and SopB, but the K120Q mutant retains some capacity for destabilizing mini-F. SopA-induced destabilization thus appears to be complex and may involve more than one SopA activity. The results are interpreted in terms of a regulatory role for SopA in the oligomerization of SopB dimers bound to the centromere.  相似文献   

7.
Ravin NV 《Plasmid》2011,65(2):102-109
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.  相似文献   

8.
Low-copy number plasmids of bacteria rely on specific centromeres for regular partition into daughter cells. When also present on a second plasmid, the centromere can render the two plasmids incompatible, disrupting partition and causing plasmid loss. We have investigated the basis of incompatibility exerted by the F plasmid centromere, sopC, to probe the mechanism of partition. Measurements of the effects of sopC at various gene dosages on destabilization of mini-F, on repression of the sopAB operon and on occupancy of mini-F DNA by the centromere-binding protein, SopB, revealed that among mechanisms previously proposed, no single one fully explained incompatibility. sopC on multicopy plasmids depleted SopB by titration and by contributing to repression. The resulting SopB deficit is proposed to delay partition complex formation and facilitate pairing between mini-F and the centromere vector, thereby increasing randomization of segregation. Unexpectedly, sopC on mini-P1 exerted strong incompatibility if the P1 parABS locus was absent. A mutation preventing the P1 replication initiation protein from pairing (handcuffing) reduced this strong incompatibility to the level expected for random segregation. The results indicate the importance of kinetic considerations and suggest that mini-F handcuffing promotes pairing of SopB-sopC complexes that can subsequently segregate as intact aggregates.  相似文献   

9.
Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere could silence centromere-proximal promoters, presumably due to subsequent polymerization of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, which was able to drive the expression of phage late genes encoding structural proteins of virion. We found that, following binding to IR4, the N15 Sop proteins could induce repression of this promoter. The repression depended on SopB and was enhanced in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters may control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.  相似文献   

10.
11.
12.
N15 is a bacteriophage of Escherichia coli that resembles lambda, but, unlike lambda, it lysogenizes as a linear plasmid. We show that stable maintenance of this unusual plasmid-prophage depends on the parA and parB genes, relatives of the partition genes of F and P1 plasmids. ParB of N15, like its F- and P1-encoded homologues, destabilizes plasmids carrying its target centromere, when present in excess. Within the genome of N15, we identified four unlinked, palindromic sequences that can promote the ParB-mediated destabilization of a moderate-copy vector in cis. They are distant from the parAB operon, unlike the centromeric sites of F and P1. Each of these palindromes could interact in vivo and in vitro with ParB. Each, when cloned separately, had properties characteristic of centromeric sites: exerted incompatibility against the N15 prophage and mini-N15 plasmids, and stabilized a mini-P1 plasmid depleted of its own partition genes when ParA and ParB of N15 were supplied. A pair of sites was more effective than a single site. Two of the centromeric sites are located in the proximity of promoters of phage genes, suggesting that, in addition to their function in partitioning of N15 prophage, they may control expression of N15 lytic functions.  相似文献   

13.
SopA, SopB proteins and the cis-acting sopC DNA region of F plasmid are essential for partitioning of the plasmid, ensuring proper subcellular positioning of the plasmid DNA molecules. We have analyzed by immunofluorescence microscopy the subcellular localization of SopA and SopB. The majority of SopB molecules formed foci, which localized frequently with F plasmid DNA molecules. The foci increased in number in proportion to the cell length. Interestingly, beside the foci formation, SopB formed a spiral structure that was dependent on SopA, which also formed a spiral structure, independent of the presence of SopB, and these two structures partially overlapped. On the basis of these results and previous biochemical studies together with our simulations, we propose a theoretical model named "the reaction-diffusion partitioning model", using reaction-diffusion equations that explain the dynamic subcellular localization of SopA and SopB proteins and the subcellular positioning of F plasmid. We hypothesized that sister copies of plasmid DNA compete with each other for sites at which SopB multimer is at the optimum concentration. The plasmid incompatibility mediated by the Sop system might be explained clearly by this hypothesis.  相似文献   

14.
Mini-F plasmid has the trans-acting genes sopA and sopB and the cis-acting site sopC which are essential for accurate partitioning of plasmid DNA molecules into both daughter cells. In this study, we purified independently SopA and SopB proteins, analyzed the in vitro DNA-binding activity of these proteins by the gel retardation assay, and determined the precise binding sites of DNA by the footprinting method. SopA binds to four repeated sequences (CTTTGC) located in the promoter-operator region of the sopAB operon. The SopA binding activity is enhanced by the addition of SopB protein. SopB protein itself does not bind to this DNA region. These results suggest that the complex of SopA and SopB proteins autoregulate the expression of the sopA-sopB operon. On the other hand, SopB protein binds to the sopC region, in which 12 direct repeats of 43-base pairs nucleotides exist. SopB protein recognizes the inverted repeats of 7 base pairs in each direct repeats. SopA protein does not affect the SopB binding activity to the sopC DNA segment.  相似文献   

15.
Structure and function of the F plasmid genes essential for partitioning   总被引:37,自引:0,他引:37  
The F plasmid in Escherichia coli has its own partition mechanism controlled by the sopA and sopB genes, and by the cis-acting sopC region. The DNA sequence of the entire partition region and its flanking regions is described here. Two large open reading frames coding for 43,700 Mr and 35,400 Mr proteins correspond to sopA and sopB, respectively. The sopB reading frame is located immediately downstream from the sopA reading frame. Twelve 43 base-pair direct repeats exist in the sopC region without any spacer regions, and one pair of seven base-pair inverted repeats exists in each of the direct repeats. Analysis of deletions in the sopC region showed that the direct repeats play an important role in plasmid partition and IncD incompatibility. IncG incompatibility is exhibited by pBR322 derivatives carrying the sopB gene alone. When compared with the partition genes parA and parB of plasmid P1, homology in amino acid sequence was found between the SopA protein of F and the ParA protein of P1, and also between SopB protein of F and ParB protein of P1. In addition, homology was found between Rep proteins of F and P1.  相似文献   

16.
The sopAB operon and the sopC sequence, which acts as a centromere, are essential for stable maintenance of the mini-F plasmid. Immunoprecipitation experiments with purified SopA and SopB proteins have demonstrated that these proteins interact in vitro. Expression studies using the lacZ gene as a reporter revealed that the sopAB operon is repressed by the cooperative action of SopA and SopB. Using immunofluorescence microscopy, we found discrete fluorescent foci of SopA and SopB in cells that produce both SopA and SopB in the presence of the sopC DNA segment, but not in the absence of sopC, suggesting the SopA-SopB complex binds to sopC segments. SopA was exclusively found to colocalize with nucleoids in cells that produced only SopA, while, in the absence of SopA, SopB was distributed in the cytosolic spaces.  相似文献   

17.
The sopAB operon and the sopC sequence, which acts as a centromere, are essential for stable maintenance of the mini-F plasmid. Immunoprecipitation experiments with purified SopA and SopB proteins have demonstrated that these proteins interact in vitro. Expression studies using the lacZ gene as a reporter revealed that the sopAB operon is repressed by the cooperative action of SopA and SopB. Using immunofluorescence microscopy, we found discrete fluorescent foci of SopA and SopB in cells that produce both SopA and SopB in the presence of the sopC DNA segment, but not in the absence of sopC, suggesting the SopA-SopB complex binds to sopC segments. SopA was exclusively found to colocalize with nucleoids in cells that produced only SopA, while, in the absence of SopA, SopB was distributed in the cytosolic spaces. Received: 14 July 1997 / Accepted: 3 October 1997  相似文献   

18.
Bacterial ATPases belonging to the ParA family assure partition of their replicons by forming dynamic assemblies which move replicon copies into the new cell-halves. The mechanism underlying partition is not understood for the Walker-box ATPase class, which includes most plasmid and all chromosomal ParAs. The ATPases studied both polymerize and interact with non-specific DNA in an ATP-dependent manner. Previous work showed that in vitro, polymerization of one such ATPase, SopA of plasmid F, is inhibited by DNA, suggesting that interaction of SopA with the host nucleoid could regulate partition. In an attempt to identify amino acids in SopA that are needed for interaction with non-specific DNA, we have found that mutation of codon 340 (lysine to alanine) reduces ATP-dependent DNA binding > 100-fold and correspondingly diminishes SopA activities that depend on it: inhibition of polymer formation and persistence, stimulation of basal-level ATP hydrolysis and localization over the nucleoid. The K340A mutant retained all other SopA properties tested except plasmid stabilization; substitution of the mutant SopA for wild-type nearly abolished mini-F partition. The behaviour of this mutant indicates a causal link between interaction with the cell's non-specific DNA and promotion of the dynamic behaviour that ensures F plasmid partition.  相似文献   

19.
In bacteria, mitotic stability of plasmids and many chromosomes depends on replicon-specific systems which comprise a centromere, a centromere-binding protein and an ATPase. Dynamic self-assembly of the ATPase appears to enable active partition of replicon copies into cell-halves, but for most ATPases (the Walker-box type) the mechanism is unknown. Also unknown is how the host cell contributes to partition. We have examined the effects of non-sequence-specific DNA on in vitro self-assembly of the SopA partition ATPase of plasmid F. SopA underwent polymerization provided ATP was present. DNA inhibited this polymerization and caused breakdown of pre-formed polymers. Centromere-binding protein SopB counteracted DNA-mediated inhibition by itself binding to and masking the DNA, as well as by stimulating polymerization directly. The results suggest that in vivo, SopB smothers DNA by spreading from sopC, allowing SopA-ATP polymerization which initiates plasmid displacement. We propose that SopB and nucleoid DNA regulate SopA polymerization and hence partition.  相似文献   

20.
Low copy-number bacterial replicons occupy specific locations in their host cells. Production of a GFP-Lac repressor hybrid protein in cells carrying F or P1 plasmids tagged with a lac operator array reveals that in smaller (younger) cells these plasmids are seen mainly as a single fluorescent focus at mid-cell, whereas larger cells tend to have two foci, one at each quarter-cell position. Duplication of the central focus is presumed to represent active partition of plasmid copies. We report here our investigation by time-lapse microscopy of the subsequent movement of these copies to the quarter positions. Following duplication of the central focus, the new foci migrated rapidly and directly to their quarter-cell destinations, where they remained until the next cell cycle. The speed of movement was about five times faster than poleward migration of oriC and 50 times faster than cell elongation. Aberrant positioning of mini-F lacking its sopC centromere demonstrated the requirement for the partition system in this localization process. From the measured number of F plasmid copies per cell it appears that each migrating focus contains two or more plasmid molecules. The molecular basis of this clustering, and evidence for phasing of the partition event in the cell cycle, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号