首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial diversity and function in soil: from genes to ecosystems   总被引:26,自引:0,他引:26  
Soils sustain an immense diversity of microbes, which, to a large extent, remains unexplored. A range of novel methods, most of which are based on rRNA and rDNA analyses, have uncovered part of the soil microbial diversity. The next step in the era of microbial ecology is to extract genomic, evolutionary and functional information from bacterial artificial chromosome libraries of the soil community genomes (the metagenome). Sophisticated analyses that apply molecular phylogenetics, DNA microarrays, functional genomics and in situ activity measurements will provide huge amounts of new data, potentially increasing our understanding of the structure and function of soil microbial ecosystems, and the interactions that occur within them. This review summarizes the recent progress in studies of soil microbial communities with focus on novel methods and approaches that provide new insight into the relationship between phylogenetic and functional diversity.  相似文献   

2.
Whole genome amplification and sequencing of single microbial cells has significantly influenced genomics and microbial ecology by facilitating direct recovery of reference genome data. However, viral genomics continues to suffer due to difficulties related to the isolation and characterization of uncultivated viruses. We report here on a new approach called 'Single Virus Genomics', which enabled the isolation and complete genome sequencing of the first single virus particle. A mixed assemblage comprised of two known viruses; E. coli bacteriophages lambda and T4, were sorted using flow cytometric methods and subsequently immobilized in an agarose matrix. Genome amplification was then achieved in situ via multiple displacement amplification (MDA). The complete lambda phage genome was recovered with an average depth of coverage of approximately 437X. The isolation and genome sequencing of uncultivated viruses using Single Virus Genomics approaches will enable researchers to address questions about viral diversity, evolution, adaptation and ecology that were previously unattainable.  相似文献   

3.
In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies.  相似文献   

4.
A major research goal in microbial ecology is to understand the relationship between gene organization and function involved in environmental processes of potential interest. Given that more than an estimated 99% of microorganisms in most environments are not amenable to culturing, methods for culture-independent studies of genes of interest have been developed. The wealth of metagenomic approaches allows environmental microbiologists to directly explore the enormous genetic diversity of microbial communities. However, it is extremely difficult to obtain the appropriate sequencing depth of any particular gene that can entirely represent the complexity of microbial metagenomes and be able to draw meaningful conclusions about these communities. This review presents a summary of the metagenomic approaches that have been useful for collecting more information about specific genes. Specific subsets of metagenomes that focus on sequence analysis were selected in each metagenomic studies. This 'targeted metagenomics' approach will provide extensive insight into the functional, ecological and evolutionary patterns of important genes found in microorganisms from various ecosystems.  相似文献   

5.
Because viruses of eukaryotic algae are incredibly diverse, sweeping generalizations about their ecology are rare. These obligate parasites infect a range of algae and their diversity can be illustrated by considering that isolates range from small particles with ssRNA genomes to much larger particles with 560?kb dsDNA genomes. Molecular research has also provided clues about the extent of their diversity especially considering that genetic signatures of algal viruses in the environment rarely match cultivated viruses. One general concept in algal virus ecology that has emerged is that algal viruses are very host specific and most infect only certain strains of their hosts; with the exception of viruses of brown algae, evidence for interspecies infectivity is lacking. Although some host-virus systems behave with boom-bust oscillations, complex patterns of intraspecies infectivity can lead to host-virus coexistence obfuscating the role of viruses in host population dynamics. Within the framework of population dynamics, host density dependence is an important phenomenon that influences virus abundances in nature. Variable burst sizes of different viruses also influence their abundances and permit speculations about different life strategies, but as exceptions are common in algal virus ecology, life strategy generalizations may not be broadly applicable. Gaps in knowledge of virus seasonality and persistence are beginning to close and investigations of environmental reservoirs and virus resilience may answer questions about virus inter-annual recurrences. Studies of algal mortality have shown that viruses are often important agents of mortality reinforcing notions about their ecological relevance, while observations of the surprising ways viruses interact with their hosts highlight the immaturity of our understanding. Considering that just two decades ago algal viruses were hardly acknowledged, recent progress affords the optimistic perspective that future studies will provide keys to unlocking our understanding of algal virus ecology specifically, and aquatic ecosystems generally.  相似文献   

6.
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.  相似文献   

7.
病毒生态学研究进展   总被引:6,自引:2,他引:4  
韩丽丽  贺纪正 《生态学报》2016,36(16):4988-4996
病毒是目前所知的最简单的生命单元,通常由外壳蛋白和包裹在外壳蛋白内的核酸两部分组成。病毒本身缺乏完整的酶系统及能量转化系统,当游离于环境中时,它只是一个有机大分子,只有侵染宿主后才具有生命特征,进行复制。病毒也是地球上最丰富的生物实体,是微生物群落和功能的重要影响因素。尽管病毒在生态系统中发挥着重要的作用,但因病毒间缺少通用的标记基因,病毒生态学的研究远远滞后于细菌和真核生物。近年来高通量测序技术的发展应用帮助人们发现和认识了许多未知的新病毒及其基因,极大地丰富了病毒基因数据库,直接推动了病毒生态学的发展。从生态学角度对病毒的结构与分类、病毒生态学研究方法、病毒的生态功能及土壤病毒生态学研究进展作一简要综述,并提出今后土壤病毒生态学研究的重点。  相似文献   

8.
土壤病毒生态学研究方法   总被引:4,自引:1,他引:4  
韩丽丽  于丹婷  贺纪正 《生态学报》2017,37(6):1749-1756
病毒是地球上最丰富的生物实体,每克土壤中可包含数以亿计的病毒,它不仅影响土壤中其它微生物的群落组成、土壤元素的生物地球化学循环,还会影响土壤微生物的物种进化,甚至影响植物、动物和人体健康。目前人们对土壤中病毒的种类及丰度、分布特征以及功能引起的生态环境效应还知之甚少。在概述病毒生态学研究方法的基础上,对土壤病毒的提取、纯化、定量及分子生态学方法等基本流程进行了比较分析,以期建立一套快速简便、高效稳定的适用于土壤病毒研究的方法,并用于研究土壤病毒的多样性及分布特征,探讨病毒在环境中的生存和传播机制,为土壤病毒的防控及开发利用提供支撑。  相似文献   

9.
In marine ecosystems, viruses exert control on the composition and metabolism of microbial communities, influencing overall biogeochemical cycling. Deep sea sediments associated with cold seeps are known to host taxonomically diverse microbial communities, but little is known about viruses infecting these microorganisms. Here, we probed metagenomes from seven geographically diverse cold seeps across global oceans to assess viral diversity, virus–host interaction, and virus-encoded auxiliary metabolic genes (AMGs). Gene-sharing network comparisons with viruses inhabiting other ecosystems reveal that cold seep sediments harbour considerable unexplored viral diversity. Most cold seep viruses display high degrees of endemism with seep fluid flux being one of the main drivers of viral community composition. In silico predictions linked 14.2% of the viruses to microbial host populations with many belonging to poorly understood candidate bacterial and archaeal phyla. Lysis was predicted to be a predominant viral lifestyle based on lineage-specific virus/host abundance ratios. Metabolic predictions of prokaryotic host genomes and viral AMGs suggest that viruses influence microbial hydrocarbon biodegradation at cold seeps, as well as other carbon, sulfur and nitrogen cycling via virus-induced mortality and/or metabolic augmentation. Overall, these findings reveal the global diversity and biogeography of cold seep viruses and indicate how viruses may manipulate seep microbial ecology and biogeochemistry.Subject terms: Environmental microbiology, Microbial ecology  相似文献   

10.
The recent rise in “omics”-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases—currently, only 0.001 % of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.  相似文献   

11.
Oxygen minimum zones (OMZs) are critical to marine nitrogen cycling and global climate change. While OMZ microbial communities are relatively well-studied, little is known about their viruses. Here, we assess the viral community ecology of 22 deeply sequenced viral metagenomes along a gradient of oxygenated to anoxic waters (<0.02 μmol/l O2) in the Eastern Tropical South Pacific (ETSP) OMZ. We identified 46 127 viral populations (≥5 kb), which augments the known viruses from ETSP by 10-fold. Viral communities clustered into six groups that correspond to oceanographic features. Oxygen concentration was the predominant environmental feature driving viral community structure. Alpha and beta diversity of viral communities in the anoxic zone were lower than in surface waters, which parallels the low microbial diversity seen in other studies. ETSP viruses were largely endemic, with the majority of shared viruses (87%) also present in other OMZ samples. We detected 543 putative viral-encoded auxiliary metabolic genes (AMGs), of which some have a distribution that reflects physico-chemical characteristics across depth. Together these findings provide an ecological baseline for viral community structure, drivers and population variability in OMZs that will help future studies assess the role of viruses in these climate-critical environments.  相似文献   

12.
Shiu SH  Borevitz JO 《Heredity》2008,100(2):141-149
Microarray technology is one of the key developments in recent years that has propelled biological research into the post-genomic era. With the ability to assay thousands to millions of features at the same time, microarray technology has fundamentally changed how biological questions are addressed, from examining one or a few genes to a collection of genes or the whole genome. This technology has much to offer in the study of genome evolution. After a brief introduction on the technology itself, we then focus on the use of microarrays to examine genome dynamics, to uncover novel functional elements in genomes, to unravel the evolution of regulatory networks, to identify genes important for behavioral and phenotypic plasticity, and to determine microbial community diversity in environmental samples. Although there are still practical issues in using microarrays, they will be alleviated by rapid advances in array technology and analysis methods, the availability of many genome sequences of closely related species and flexibility in array design. It is anticipated that the application of microarray technology will continue to better our understanding of evolution and ecology through the examination of individuals, populations, closely related species or whole microbial communities.  相似文献   

13.
Multivariate analyses in microbial ecology   总被引:13,自引:0,他引:13  
Environmental microbiology is undergoing a dramatic revolution due to the increasing accumulation of biological information and contextual environmental parameters. This will not only enable a better identification of diversity patterns, but will also shed more light on the associated environmental conditions, spatial locations, and seasonal fluctuations, which could explain such patterns. Complex ecological questions may now be addressed using multivariate statistical analyses, which represent a vast potential of techniques that are still underexploited. Here, well-established exploratory and hypothesis-driven approaches are reviewed, so as to foster their addition to the microbial ecologist toolbox. Because such tools aim at reducing data set complexity, at identifying major patterns and putative causal factors, they will certainly find many applications in microbial ecology.  相似文献   

14.
We explored the attachment of an H16N3 influenza virus to human, mallard, and gull tissues using virus histochemistry applied to tissue microarrays and employing human and mallard viruses as references. Of the viruses tested, the H16N3 gull virus most readily attached to the human respiratory tract and eye. These results underscore the need to assess the potential for gull influenza viruses to replicate in human tissues and further investigate the role of gulls in influenza virus ecology.  相似文献   

15.
微生物分子生态学研究方法的新进展   总被引:2,自引:0,他引:2  
环境中微生物的群落结构及多样性和微生物的功能及代谢机理是微生物生态学的研究热点,长期以来,由于受到研究技术的限制,对微生物的群落结构和多样性的认识还不全面,微生物的功能及代谢机理方面了解也很少.随着高通量测序、基因芯片等新技术的不断更新,微生物分子生态学的研究方法和研究途径也在不断变化.高通量测序技术改变了微生物多样性、宏基因组学和宏转录组学的研究方法,GeoChip高密度覆盖海量已知功能的基因探针于单张芯片,能快速确定微生物和已知功能基因的存在与否.总结和比较了目前最新的研究手段,并归纳了这些方法的适用性和优缺点.  相似文献   

16.
The latest experimental data on the role of viruses in the origin of human tumors are discussed. This group of viruses consists of T-cell leukemia virus type 1 (HTLV 1), herpes viruses (HHV 8 and Epstein-Barr virus), hepatitis B virus, and human papilloma viruses. The most typical feature of this group of viruses is a very long latent period from the initial infection to the development of the disease that varies between 10 and 40 years. The mechanism of malignant cell conversion is specific for each viral type but is mainly associated with a disruption of functions of cellular genes participating in the control of cell division and proliferation. It can be a direct inactivation of tumor suppressor genes by their interaction with viral gene products (papilloma viruses), or a trans-activation of cellular genes modulating cell proliferation by viral gene products (hepatitis B virus and HTLV 1). Viruses play an initiative role and additional genetic changes in the genome of infected cells are necessary for complete expression of the oncogenic potential of the viral genes. Only these cells will give rise to a monoclonal cell population with uncontrolled proliferation. New approaches for the creation of vaccines against cancers associated with hepatitis B virus and papilloma viruses (hepatocellular carcinomas and cervical tumors, respectively) are in progress. These vaccines have been found to be effective in prevention of the disease in the experimental models and are now beginning to be used for human vaccination.  相似文献   

17.
Designing environmental DNA microarrays that can be used to survey the extreme diversity of microorganisms existing in nature, represents a stimulating challenge in the field of molecular ecology. Indeed, recent efforts in metagenomics have produced a substantial amount of sequence information from various ecosystems, and will continue to accumulate large amounts of sequence data given the qualitative and quantitative improvements in the next-generation sequencing methods. It is now possible to take advantage of these data to develop comprehensive microarrays by using explorative probe design strategies. Such strategies anticipate genetic variations and thus are able to detect known and unknown sequences in environmental samples. In this review, we provide a detailed overview of the probe design strategies currently available to construct both phylogenetic and functional DNA microarrays, with emphasis on those permitting the selection of such explorative probes. Furthermore, exploration of complex environments requires particular attention on probe sensitivity and specificity criteria. Finally, these innovative probe design approaches require exploiting newly available high-density microarray formats.  相似文献   

18.
微生物生态学理论框架   总被引:12,自引:7,他引:5  
曹鹏  贺纪正 《生态学报》2015,35(22):7263-7273
微生物是生态系统的重要组成部分,直接或间接地参与所有的生态过程。微生物生态学是基于微生物群体的科学,利用微生物群体DNA/RNA等标志物,重点研究微生物群落构建、组成演变、多样性及其与环境的关系,在生态学理论的指导和反复模型拟合下由统计分析得出具有普遍意义的结论。其研究范围从基因尺度到全球尺度。分子生物学技术的发展,使人们可以直接从基因水平上考查其多样性,从而使得对微生物空间分布格局及其成因的深入研究成为可能。进而可以从方法学探讨微生物生物多样性、分布格局、影响机制及其对全球变化的响应等。在微生物生态学研究中,群落构建与演化、分布特征(含植物-微生物相互关系)、执行群体功能的机理(生物地球化学循环等)、对环境变化的响应与反馈机理是今后需要关注的重点领域。概述了微生物生态学的概念,并初步提出其理论框架,在对比宏观生态学基础理论和模型的基础上,分析微生物多样性的研究内容、研究方法和群落构建的理论机制,展望了今后研究的重点领域。  相似文献   

19.
Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host''s resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances.  相似文献   

20.
土壤微生物群落多样性解析法:从培养到非培养   总被引:9,自引:0,他引:9  
刘国华  叶正芳  吴为中 《生态学报》2012,32(14):4421-4433
土壤微生物群落多样性是土壤微生物生态学和环境科学的重点研究内容之一.传统的土壤微生物群落多样性解析技术是指纯培养分离法(平板分离和形态分析法以及群落水平生理学指纹法).后来,研究者们建立了多样性评价较为客观的生物标记法(磷脂脂肪酸法和呼吸醌指纹法).随着土壤基因组提取技术和基因片段扩增(PCR)技术的发展,大量的现代分子生物学技术不断地涌现并极大地推动了土壤微生物群落多样性的研究进程.这些技术主要包括:G+C%含量、DNA复性动力学、核酸杂交法(FISH和DNA芯片技术)、土壤宏基因组学以及DNA指纹图谱技术等.综述了这些技术的基本原理、比较了各种技术的优缺点并且介绍了他们在土壤微生物群落多样性研究中的应用,展望了这些技术的发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号