首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
Monokaryons of Coprinus cinereus constitutively form small spores (oidia) in the aerial mycelium. Some strains also produce large, inflated single cells (chlamydospores) at the agar/air interface, and hyphal aggregates (hyphal knots) that can develop into sclerotia. Monokaryons show various reactions upon transformation with heterologous A mating type genes. Production of oidia in such A-activated transformants is repressed in the dark and induced by blue light. Five of six monokaryons tested following transformation with A genes showed induced production of hyphal knots and sclerotia in the dark, and at least three strains showed enhanced chlamydospore production in the dark. Continuous incubation under blue light inhibited formation of hyphal knots, sclerotia and chlamydospores in both competent monokaryons and in A-activated transformants. On artificial medium and on a 12?h light/12?h dark regime, A-activated transformants of one distinct monokaryon (218) formed fruit-body primordia that were arrested in development before karyogamy. Our studies show that A mating type genes control all major differentiation processes in Coprinus, but whether developmental processes can proceed depends on the genetic background of the strain.  相似文献   

2.
The A and B mating type pathways in Coprinus cinereus monokaryons can be activated by transformation with cloned genes from strains of compatible mating types. The presence of heterologous A mating-type genes (Aon) induces production of submerged chlamydospores, hyphal knots and sclerotia in cultures kept in the dark. Upon illumination of transformants of certain strains (218), fruiting body primordia may develop that arrest before karyogamy. Furthermore, formation of aerial spores (oidia) is repressed by the action of A mating type genes in the dark, but light overrides this repression. Heterologous B mating type genes enhance the effects of the A genes on developmental processes, and partially repress the negative action of light on A-mediated regulation of development. Most notably, A-induced fruiting occurs more efficiently and earlier when the B mating type pathway is also active (Bon). However, activation of the B pathway alone is not sufficient to induce fruiting. Unlike A-activated transformants, A+ B-activated transformants of monokaryon 218 form mature fruiting bodies. Therefore, the B genes control fruiting body maturation at the stage of karyogamy. Basidia within the fruiting bodies that were analysed contained four spores in a typical post-meiotic arrangement. In the absence of an activated A mating type pathway, B mating type genes cause deformation and hyperbranching of vegetative hyphae, a reduction in aerial mycelium, and invasion of the agar substrate - a phenotype resembling the "flat" phenotype known from B-activated Schizophyllum commune strains. B-activated transformants usually show enhanced production of chlamydospores and hyphal knots, but maturation of sclerotia is variably efficient. Activation of the B mating type pathway in monokaryons blocked acceptance of nuclei, but not activation of the A mating type pathway.  相似文献   

3.
Developmental variants in fruiting ofCoprinus cinereus were induced by mutagenizing oidia of the homokaryotic fruiting strain CopD5-12 with UV light. Through screening of 2,696 isolates, 1,018 strains exhibited defects in fruiting and were classified into 8 groups: (1) knotless variants, which fail to form hyphal knots, the first visible sign of fruiting; (2) primordiumless variants, which form hyphal knots but fail to develop fruit-body primordia; (3) maturationless variants, which form fruit-body primordia but do not form mature fruit bodies; (4) elongationless variants, which form mature fruit bodies with short stipes; (5) expansionless variants, which form mature fruit bodies with unexpanded pilei; (6) sporeless variants, which fail to produce black basidiospores, resulting in fruit bodies with white pilei after maturation; (7) compound type, which includes variants exhibiting several of the phenotypes described above; (8) others, including variants that produce a “dark stipe” even under in light/dark conditions, which is formed under continuous darkness in the wild-type. Two elongationless variants were characterized histologically.  相似文献   

4.
Coprinus cinereus has two main types of mycelia, the asexual monokaryon and the sexual dikaryon, formed by fusion of compatible monokaryons. Syngamy (plasmogamy) and karyogamy are spatially and temporally separated, which is typical for basidiomycetous fungi. This property of the dikaryon enables an easy exchange of nuclear partners in further dikaryotic-monokaryotic and dikaryotic-dikaryotic mycelial fusions. Fruiting bodies normally develop on the dikaryon, and the cytological process of fruiting-body development has been described in its principles. Within the specialized basidia, present within the gills of the fruiting bodies, karyogamy occurs in a synchronized manner. It is directly followed by meiosis and by the production of the meiotic basidiospores. The synchrony of karyogamy and meiosis has made the fungus a classical object to study meiotic cytology and recombination. Several genes involved in these processes have been identified. Both monokaryons and dikaryons can form multicellular resting bodies (sclerotia) and different types of mitotic spores, the small uninucleate aerial oidia, and, within submerged mycelium, the large thick-walled chlamydospores. The decision about whether a structure will be formed is made on the basis of environmental signals (light, temperature, humidity, and nutrients). Of the intrinsic factors that control development, the products of the two mating type loci are most important. Mutant complementation and PCR approaches identified further genes which possibly link the two mating-type pathways with each other and with nutritional regulation, for example with the cAMP signaling pathway. Among genes specifically expressed within the fruiting body are those for two galectins, beta-galactoside binding lectins that probably act in hyphal aggregation. These genes serve as molecular markers to study development in wild-type and mutant strains. The isolation of genes for potential non-DNA methyltransferases, needed for tissue formation within the fruiting body, promises the discovery of new signaling pathways, possibly involving secondary fungal metabolites.  相似文献   

5.
B incompatibility factor mutants (Bmut) in Pleurotus ostreatus were recovered from common-B mating heterokaryons resulted from matings between wild-type monokaryons with different A but the same B factors (A1B2 and A2B2) after NTG mutagenesis. The mutant monokaryons such as A1B2mut and A2B2mut were observed to have regularly uninucleated hyphal cells and to be compatible with each other. Matings between A1B2mut and A2B2mut monokaryons produced stable heterokaryons (A1B2mut + A2B2mut) that had binucleated hyphal cells with true clamp connections and formed normal fruit-bodies. Mating tests using basidiospore progeny from each of these heterokaryons revealed the bipolar mating pattern. Genetic analysis suggested that the mutation of B factor in P. ostreatus might occur in the B incompatibility factor genes. Received: August 3, 2001 / Accepted: January 18, 2002  相似文献   

6.
The MAT A locus of Yarrowia lipolytica, which was on the basis of its ability to induce sporulation in a diploid B/B strain, represses the mating capacity of this strain. The gene functions required for induction of sporulation and repression of conjugation could be separated by subcloning. Sequence analysis revealed two ORFs in the MAT A locus. One of them (MAT A1) codes for a protein of 119 amino acids which is required to induce sporulation. The other (MAT A2) codes for a protein of 291 amino acids that is able to repress conjugation. Both genes are oriented divergently from a central promoter region, which possesses putative TATA and CAAT boxes for both genes. The product of MAT A1 shows no homology to any known protein and seems to represent a new class of mating-type genes. MAT A2 contains a HMG box with homology to other mating-type genes. Both MAT A1 and MAT A2 are mating-type specific. In cells of both mating types, the regions flanking the MAT A locus contain sequences with homology to either S. cerevisiae SLA2 and ORF YBB9, respectively. From hybridization and subcloning data we estimate that the MAT A region is approximately 2 kb long and is present only once in the genome. Received: 25 January 1999 / Accepted: 16 April 1999  相似文献   

7.
Summary The A mating type factor of Coprinus cinereus regulates part of a developmental sequence that leads to the conversion of the asexual monokaryon into the fertile dikaryon. The A42 factor is a complex of seven genes, at least four of which are involved in determining the specificity of mating interactions. In this report we show that the A42 genes are constitutively expressed in both monokaryons and dikaryons. This has important implications with respect to intracellular recognition of a compatible mating, which requires an interaction between proteins already present within the cells of the mating partners, and for the subsequent maintenance of dikaryotic growth.  相似文献   

8.
Monokaryotic mycelia of the homobasidiomycete Coprinus cinereus form asexual spores (oidia) constitutively in abundant numbers. Mycelia with mutations in both mating type loci (Amut Bmut homokaryons) also produce copious oidia but only when exposed to blue light. We used such an Amut Bmut homokaryon to define environmental and inherent factors that influence the light-induced oidiation process. We show that the Amut function causes repression of oidiation in the dark and that light overrides this effect. Similarly, compatible genes from different haplotypes of the A mating type locus repress sporulation in the dark and not in the light. Compatible products of the B mating type locus reduce the outcome of light on A-mediated repression but the mutated B function present in the Amut Bmut homokaryons is not effective. In dikaryons, the coordinated regulation of asexual sporulation by compatible A and B mating type genes results in moderate oidia production in light. Copyright 1998 Academic Press.  相似文献   

9.
10.
Pholiota nameko is a wood-rotting edible mushroom that carries a bipolar A incompatibility factor gene. The linkage analysis of the multiple allelomorphic A factor gene demonstrated that sexual reproduction produced a monospore isolate carrying a new A factor gene in addition to two parental mating types of isolates. However, 10%–30% of the modified monospore isolates could not produce a dikaryon with both of the parental monokaryons by crossing. It is concluded that the bipolar A incompatibility factor gene of P. nameko is constituted of two functional subunits, Aα and Aβ, which might be successively located beside each other with an apparent genetic distance of 0.3 centi-Morgan between them on the same chromosome. Further, some monospore isolates that did not conjugate with both parental monokaryons could produce dikaryons with different monokaryotic stocks with either one of the parental mating types. This result suggests that the crossing capability of these isolates were essentially those for one of the mating types of the parental monokaryons, but that their function for mating activity was made partially by unequal crossing-over in the process of sexual recombination. Received: May 1, 2001 / Accepted: December 5, 2001  相似文献   

11.
The A mating factor of Coprinus cinereus determines compatibility in mating by regulating part of a developmental sequence that leads to dikaryon formation. The A genes that trigger development encode two different classes of homeodomain proteins, and for a successful mating, a protein of one class, HD 1, must interact with a protein of the other class, HD 2. In this report we show that C. cinereus A genes that encode HD 2 proteins, a2-1 and b2-1, can elicit A-regulated development in the heterologous host C. bilanatus. Transformation rates were very low, suggesting that the genes were poorly transcribed. The fact that the HD 2 genes are functionally expressed implies successful heteromultimeric association of putative DNA-binding proteins coded by the two Coprinus species. This interaction was sufficient to satisfy the need for different A factors in the formation of a fertile C. bilanatus dikaryon, but fertile dikaryons were more readily produced in matings with the a2-1 gene transformants. The C. cinereus A genes, b1-1 and d1-1, which encode HD1 proteins, were either not expressed or their proteins were non-functional in C. bilanatus. These experiments raise some interesting questions regarding HD1–HD2 protein interactions.  相似文献   

12.
Relatively few ectomycorrhizal fungal species are known to form sclerotia. Usually, sclerotia are initiated at the extraradical mycelium. In this study, we present anatomical and ultrastructural evidence for the formation of sclerotia directly in the hyphal mantle of the mycorrhizal morphotype Pinirhiza sclerotia. A dark-pigmented fungal strain was isolated from Pinirhiza sclerotia and identified by molecular tools as Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii s.l. As dark septate fungi are known to be mostly endophytic, resyntheses with Pinus sylvestris and A. macrosclerotiorum as well as Populus tremula × Populus tremuloides and A. macrosclerotiorum or P. fortinii s.l. were performed under axenic conditions. No mycorrhizas were found when hybrid aspen was inoculated with A. macrosclerotiorum or P. fortinii. However, A. macrosclerotiorum formed true ectomycorrhizas in vitro with P. sylvestris. Anatomical and ultrastructural features of this ectomycorrhiza are presented. The natural and synthesized ectomycorrhizal morphotypes were identical and characterized by a thin hyphal mantle that bore sclerotia in a later ontogenetic stage. The Hartig net was well-developed and grew up to the endodermis. To our knowledge, this is the first evidence at the anatomical and ultrastructural level that a close relative of P. fortinii s.l. forms true ectomycorrhizas with a coniferous host.  相似文献   

13.
14.
15.
Pholiota nameko produced abundant oidia on aerial hyphae from monokaryotic and dikaryotic test stocks, but oidia were rare on submerged hyphae. The oidia from the former stocks had a layer of hydrophobic protein between the cell wall and the inner cell membrane which was absent in the oidia from the latter. The only remarkable differences in the morphological features of the oidia from monokaryotic and dikaryotic mycelia was the slightly larger size of the latter. Observation of various test stocks on slide cultures revealed that about 80% of oidia were produced from the secondary branched hypha, and about 20% from the terminal hyphal, cell of the main hypha. In the former, the secondary hyphae were segmented to form several oidium cells; in the latter, a single or several oidia were formed at the terminal end of the main hypha. Most oidia from monokaryons and dikaryons had only one haploid nucleus, while the remainders were multinucleate. Among the stocks tested, most oidia had a DNA content with a haploid amount at the G1 phase of the cell cycle, but a few contained twice that amount corresponding to the G2 phase  相似文献   

16.
In order to study the role of signal transduction pathways in the regulation of morphology in Neurospora crassa, we cloned and characterized a ras homologue, termed NC-ras2. The predicted protein product of this gene is composed of 229 amino acid residues and contains all the consensus sequences shared by the ras protein family. The gene is located in linkage group V. An NC-ras2 disruptant showed morphological characteristics very similar to those of the smco7 mutant, which also maps to linkage group V. Nucleotide sequence analysis revealed that the smco7 mutant harbored a single base deletion in the NC-ras2 gene, which is predicted to result in the truncation of the protein product. Introduction into the smco7 mutant of an NC-ras2 clone yielded stable transformants with a wild-type phenotype. The smco7 mutant exhibited very slow hyphal growth and the rate of conidial formation was approximately one two-hundredth of wild type. The smco7 mutation causes both the changes in the pattern of hyphal growth and the defects in cell wall synthesis. Both the diameter and the length of the apical compartment were shorter in the hyphae of the smco7 mutant. These results suggest that NC-ras2 is identical to smco7, and that the signal transduction pathway mediated by the NC-ras2 protein regulates the apical growth of hyphae, cell wall synthesis, and conidial formation in N. crassa. Received: 1 October 1996 / Accepted: 9 December 1996  相似文献   

17.
We have used a plasmid containing the argB gene to transform an Aspergillus nidulansargB-deleted strain in the presence of restriction enzymes and show a 20- to 60-fold increase in transformation frequency via restriction enzyme-mediated integration (REMI). This procedure was used to try to tag new genes involved in the asexual development of this fungus. More than 2000 transformants isolated following electroporation of conidia and ∼3700 transformants recovered following protoplast fusion were screened for sporulation defects. Unexpectedly, developmental mutants were obtained only when the protoplast fusion approach was used. Southern blot analysis of these mutants, and of randomly selected transformants obtained by electroporation, was consistent with the occurrence of single plasmid integration events in 33 and 65% of the cases, respectively. The argB marker was shown to be tightly linked to the mutant phenotype in only 62% of the mutants analyzed by sexual crosses. Partial DNA sequencing of a tagged gene, whose mutation delays asexual sporulation and results in a fluffy phenotype, showed no homology to previously reported sequences. Our results indicate that REMI can be used in A. nidulans to increase the transformation frequency and illustrate the advantages and potential problems when using REMI to tag genes of interest in this and other fungi. Received: 22 August 1997 / Accepted: 20 November 1997  相似文献   

18.
19.
In three tropical rain forest light environments in Sabah, Malaysia, we compared photosynthesis in seedlings of ten climax tree species with putatively differing shade tolerances. The objectives of the study were (a) to characterise the range of photosynthetic responses in ten species of the Dipterocarpaceae and (b) to elucidate those photosynthetic characteristics that might provide a basis for niche partitioning. Seedlings were acclimated (c. 7 months) in three light environments; understorey, partial shade and a gap (140 m2). The light environments represented a gradation in median diurnal (0630–1830 hours) photon flux density (PFD) ranging from understorey (4.7 μmol m−2 s−1), through partial shade (21.2 μmol m−2 s−1) to gap (113.7 μmol m−2 s−1). Integrated diurnal PFD were in the sequence gap > partial shade > understorey (15.2, 4.7, 1.3 mol m−2 day−1, respectively). In gap-acclimated plants, species differed in the photosynthetic light-response variables apparent quantum yield, dark respiration rate, light compensation point, net saturated leaf assimilation rate (A sat), and in stomatal conductance (g s sat) when assimilation rate (A) was saturated. A light-demanding pioneer species (Macaranga hypoleuca) and a shade-demanding understorey species (Begonia sp.) had, respectively, higher and lower A sat and g s sat than the dipterocarp species. In high-light conditions A sat and g s sat were strongly positively correlated in dipterocarp species. Differing photosynthetic characteristics of gap-acclimated plants suggest that, in these dipterocarp species, different rates of carbon fixation may be an important factor contributing towards niche partitioning. Mean integrated diurnal A (A diurnal) in the gap, partial shade and understory were, respectively, 122.9, 52.7, 20.5 mmol m−2 day−1. Differences occurred in A diurnal of dipterocarp species between light environments. When Macaranga was included, differences in A diurnal were evident in the gap and partial shade, and in both cases were attributed to the pioneer. For the variable A diurnal, there was of a shift in the rank position of Macaranga among light environments, but a shift did not occur among the dipterocarp species. Results from this study are consistent with the idea that rates of carbon fixation per unit leaf area may contribute towards niche differentiation between the climax and single pioneer species, but not within the group of climax species. Other physiological and/or carbon allocation factors may be involved in any niche partitioning; dipterocarp species often have inherently different growth rates and susceptibility to herbivory. As an alternative to niche partitioning, dipterocarp species may co-exist in natural light environments as a result of habitat disequilibrium or purely stochastic processes. Received: 2 April 1997 / Accepted: 13 July 1997  相似文献   

20.
We have developed a novel system for the sensitive detection of nptII genes (kanamycin resistance determinants) including those present in transgenic plant genomes. The assay is based on the recombinational repair of an nptII gene with an internal 10-bp deletion located on a plasmid downstream of a bacterial promoter. Uptake of an nptII gene by transformation restores kanamycin resistance. In Escherichia coli, promoterless nptII genes provided by electroporation were rescued with high efficiency in a RecA-dependent recombinational process. For the rescue of nptII genes present in chromosomal plant DNA, the system was adapted to natural transformation, which favours the uptake of linear DNA. When competent Acinetobacter sp. BD413 (formerly A. calcoaceticus) cells containing the mutant nptII gene on a plasmid were transformed with DNA from various transgenic plants carrying nptII as a marker gene (Solanum tuberosum, Nicotiana tabacum, Beta vulgaris, Brassica napus, Lycopersicon esculentum), kanamycin-resistant transformants were obtained roughly in proportion to the concentration of nptII genes in the plant DNA. The rescue of nptII genes occurred in the presence of a more than 6 × 106-fold excess of plant DNA. Only 18 ng of potato DNA (2.5 × 103 genome equivalents, each with one copy of nptII) was required to produce one kanamycin-resistant transformant. These experiments and others employing DNA isolated from soil samples demonstrate that the system allows reliable and highly sensitive monitoring of nptII genes in transgenic plant DNA and in DNA from environmental sources, such as soil, without the need for prior DNA amplification (e.g. by PCR). Received: 20 May 1997 / Accepted: 17 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号