首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of uncouplers and diffusible acids on K+ transport was studied in yeast.Although the K+ transport system seems to depend on ATP to function, the effects of uncouplers are not due primarily to its action on the energy conserving systems of the cell.Other uncouplers with different structures to that of DNP showed also an inhibitory effect on K+ transport, which agrees with their reported ability to conduct protons through membranes.Uncouplers, besides inhibiting K+ uptake, produce an efflux of this cation; however, the rate of efflux produced is quantitatively important only when the cells have previously taken up the cation; there seems to exist a mechanism which prevents the loss of cations by yeast.In the absence of substrate, at pH 8.5, with 0.5 m KCl, TCS produces the efflux of H+, and when 86Rb+ was used as a substitute for K+, an increase of the entrance of the cation could be detected in the presence of the uncoupler. It seems that the effect of the uncoupler depends on the direction of the combined H+ and K+ gradients, or the electrochemical potential of the cell.As reported by other authors, weak diffusible acids increase the uptake of K+ by yeast, and this effect is not due to changes in the metabolism, but to the magnitude of the entrance of the molecules to the yeast cell.It was found that the efflux of the acids (H2CO3), on the other hand, can produce an efflux of K+, which means that anions are important not only for the entrance of the cations, but for its permanence within the cell as well.The data seem to be in agreement with the hypothesis of the existence of a proton pump, responsible for the creation of an electrochemical potential, involved in K+ transport. At low pH, this pump seems to be activated by the transport of K+ into the cell.  相似文献   

2.
The Na+-dependent transport of 5-oxoproline into rabbit renal brush-border vesicles was stimulated by a K+ diffusion potential (interior-negative) induced by valinomycin. Na+ salts of two anions of different epithelial permeabilities also affected 5-oxoproline transport. These results show that the Na+-dependent 5-oxoproline transport in renal brush-border vesicles is an electrogenic process which results in a net transfer of positive charge. Maximum transport of 5-oxoproline occurred at an extravesicular pH of 6.0 to 8.0 and over that pH range, 5-oxoproline exists completely as an anion with a negative charge. The simplest stoichiometry consistent with this process is, therefore, the cotransport of one 5-oxoproline anion with two sodium ions. The presence of K+ inside the vesicles stimulated the Na+-dependent transport of 5-oxoproline. This stimulatory effect was specific for K+ and required the presence of Na+. The presence of Na+ gradient was not mandatory for the K+ action. The stimulation by the intravesicular K+ was seen in the presence as well as in the absence of a K+ gradient. Therefore, the increased influx of 5-oxoproline was not coupled to the simultaneous efflux of K+. The presence of K+ in the extravesicular medium alone did not affect the Na+-dependent transport of 5-oxoproline, showing that the site of K+ action was intravesicular. Glutamate did not interact with the Na+-dependent 5-oxoproline transport even in the presence of an outward K+ gradient.  相似文献   

3.
Respiratory control in cytochrome oxidase   总被引:7,自引:0,他引:7  
Vesicles of cytochrome oxidase, generated by dilution of the oxidase with a 15-fold excess of lipid by the Hinkle-Racker method, showed a respiratory control index of greater than 5 in presence of the combination of valinomycin and nigericin. Uncouplers were found to be ineffective in releasing respiratory control in the absence of valinomycin. Valinomycin titration in the presence of excess nigericin gave approximately a one to one stoichiometry with cytochrome oxidase. We propose that coupling of electron transfer to valinomycin K+ transport in cytochrome oxidase vesicles is a molecular event; the insensitivity of respiratory control to uncouplers is a consequence of the absence of the systems other than cytochrome oxidase which are required for the action of uncouplers.  相似文献   

4.
Novel activities of bafilomycin A1, a macrolide antibiotic known as an inhibitor of V-ATPases, were discovered. Bafilomycin A1 induced uptake of potassium ions by energized mitochondria and caused mitochondrial swelling, loss of membrane potential, uncoupling of oxidative phosphorylation, inhibition of the maximal respiration rates, and induced pyridine nucleotide oxidation. The mitochondrial effects provoked by nanomolar concentrations of bafilomycin A1 were connected to its activity as a potent, K+-specific ionophore. The K+ ionophoric activity of bafilomycin A1 was observed also in black lipid membranes, indicating that it was an inherent property of the bafilomycin A1 molecule. It was found that bafilomycin A1 is a K+ carrier but not a channel former. Bafilomycin A1 is the first and currently unique macrolide antibiotic with K+ ionophoric properties. The novel properties of bafilomycin A1 may explain some of the biological effects of this plecomacrolide antibiotic, independent of V-ATPase inhibition.  相似文献   

5.
Lin W  Hanson JB 《Plant physiology》1974,54(3):250-256
The correlations between ATP concentration in corn (Zea mays) root tissue and the rate of phosphate absorption by the tissue have been examined. Experimental variation was secured with 2,4-dinitrophenol, oligomycin, mersalyl, l-ethionine, 2-deoxyglucose, N2 gassing and inhibition of protein synthesis. It is concluded that ATP could be the energy source for potassium phosphate absorption, but only if the transport mechanism possesses certain properties: oligomycin-sensitivity; creation of a proton gradient susceptible to collapse by uncouplers; phosphate transport via a mersalyl-sensitive Pi-OH transporter; good activity at energy charge as low as 0.4; short enzymatic half-life for the ATPase or phosphate transporter; a linked mechanism for K+-H+ exchange transport, possibly electrogenic.  相似文献   

6.
Summary The combination of valinomycin and nigericin in the presence of K+ uncouples submitochondrial particles (SMP) as evidenced by: 1) loss and release of the oligomycin-induced respiratory control; 2) inhibition of the P/0 ratio; 3) inhibition of three energy-linked reactions — pyridine-nucleotide transhydrogenation, reversal of electron-transfer, and bromthymol blue and 8-anilino-1-naphtalenesulfonate responses; and 4) change of redox state of cytochromes to the same extent obtained with conventional uncouplers. Neither antibiotic alone, in the presence of K+, markedly affected the energized state of the system. Direct measurements of K+ and H+ movements showed that SMP did indeed translocate these ions in a predictable manner, i. e., a nigericin-stimulated influx of K+ to SMP, followed by a valinomycin-mediated efflux of the K+ taken up. The NH 4 + -dependent uncoupling is demonstrated to be associated with the uptake of NH 4 + by SMP with a consequent collapse of the pH gradient established during respiration, followed by a valinomycin-mediated efflux of the NH 4 + taken up. The effects of cations and antibiotics can be mimicked by suitable combinations of cations and anions, suggesting that the valinomycin-mediated efflux of cations from SMP is electrophoretic in nature and can be replaced by an electrophoretic influx of appropriate anions. Analogies are drawn with observations reported on bacterial chromatophores and chloroplasts, and a general scheme is suggested. The implications of these results are discussed in terms of the current hypotheses of energy coupling in oxidative and photosynthetic phosphorylation.This investigation constitutes a portion of the work to be submitted to the Graduate School of Arts and Sciences, University of Pennsylvania, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

7.
With chromatophores ofRhodospirillum rubrum, valinomycin inhibited electron transport in the presence or absence of K+. NH4Cl had no effect on photophosphorylation but uncoupled with valinomycin present. ATPase activity was stimulated by NH4Cl plus valinomycin but not by either alone. K+ partially reversed the inhibition of phosphorylation and the stimulation of ATPase by valinomycin plus NH4Cl.With chloroplasts, valinomycin inhibited coupled but not basal electron transport. The inhibition was only partially reversed by uncouplers. Valinomycin stimulated the light-activated Mg2+-dependent ATPase similar to several uncouplers such as quinacrine, methylamine, and S-13. In addition, valinomycin inhibited delayed light emission and stimulated the H+/e ratio. These contrasting activities in chloroplasts are not easily explained.Contribution number 389 of the Charles F. Kettering Research Laboratory.  相似文献   

8.
The sensory transduction chain of photophobic responses in the blue-green alga, Phormidium uncinatum seems to involve a gating cation transport through membrane bound ion channels which provides an effective amplification.The calcium conducting ionophore A23187 inhibits the photophobic response totally and induces frequent reversals which resemble phobic responses but occur without any light stimulation. This indicates that the electrogenic ion conductance may depend on a gradient of divalent cations, esp. calcium. The calcium conductance during a photophobic response is further confirmed by the inhibitory effect of ruthenium red and lanthanum, blockers of the electrogenic calcium transport. In the case of lanthanum this inhibition is found at a concentration at which neither the number of motile filaments nor the average speed of movement is impaired.Incorporation of ionophores for monovalent cations (gramicidin and valinomycin) only partially impairs the response. Similarly, inhibition of the Na+/K+ pump by ouabain is less effective. Thus, the existence of a countercurrent of monovalent cations during the response, which has been described for e.g. ciliates, is yet obscure in blue-green algae.  相似文献   

9.
Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H+ ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.  相似文献   

10.
In rat liver mitochondria, the macrocyclic polyether, dibenzo-18-crown-6 (polyether XXVIII) inhibits the oxidation of NAD-dependent substrates, as stimulated by ADP, uncouplers and valinomycin plus K+. It does not inhibit the oxidation of succinate. It is concluded that polyether XXVIII inhibits electron transfer in the NADH-CoQ span of the respiratory chain. This is a process that is reversed by menadione. Inhibition of oxidation of NAD-dependent substrates in K+-depleted mitochondria induced by the polyether is reversed by concentrations of K+ higher than 60 mM, and also by Li+, a cation that does not complex with polyether XXVIII. As assayed by swelling mitochondria, reversal of the inhibition of electron transfer is accompanied by influx of monovalent cations. Polyether XXVIII also inhibits in submitochondrial particles the aerobic oxidation of NADH, but not that of succinate; this inhibition is also reversed by K+ at high concentrations, and Li+. The data are consistent with the hypothesis that a monovalent cation is required for maximal rates of electron transport in the NADH-CoQ span of the respiratory chain.  相似文献   

11.
The kinetics and mechanism of passive and active proton translocation in submitochondrial vesicles, obtained by sonication of beef heart mitochondria, have been studied.Analysis of the anaerobic release of the protons taken up by submitochondrial particles in the respiring steady state shows that proton diffusion consists of two parallel, apparent first-order processes: a fast reaction which, on the basis of its kinetic properties and response to cations and various effectors, is considered to consist of a proton/monovalent cation exchange; and a slow process which, on analogous grounds, is considered as a single electrogenic flux.The study of the various parameters of the respiration-linked active proton translocation and of the accompanying migration of permeant anions and K+ led to the following conclusions: (i) The oxidoreduction-linked proton translocation is electrogenic. (ii) Cation counterflow is not a necessary factor in the respiration-driven proton translocation. (iii) The membrane potential developed by active proton translocation exerts a coupling with respect to permeant cations and anions. (iv) The respiration-driven proton translocation is secondarily coupled, through the ΔμH component of the electrochemical proton gradient and at the level of a proton-cation exchange system of the membrane, to the flow of K+ and Na+.  相似文献   

12.
Lin W 《Plant physiology》1979,63(5):952-955
Evidence is presented that K+ uptake in corn root segments is coupled to an electrogenic H+/K+ -exchanging plasmalemma ATPase while phosphate uptake is coupled to an OH/Pi antiporter. The plasmalemma ATPase inhibitor, diethylstilbestrol, or the stimulator, fusicoccin, altered K+ uptake directly and phosphate uptake indirectly. On the other hand, mersalyl, an OH/Pi antiporter inhibitor, inhibited phosphate uptake instantly but only slightly affected K+ uptake. Collapse of the proton gradient across the membrane by (p-trifluoromethoxy) carbonyl cyanide phenylhydrazone resulted in immediate inhibition of K+ uptake but only later inhibited phosphate uptake. Changing the pH of the absorption solution had opposite effects on K+ and phosphate uptake. In addition, a 4-hour washing of corn root tissue induced a 5-fold increase in the rate of K+ uptake with little or no lag, but only a 2- to 3-fold increase in phosphate uptake with a 30- to 45-minute lag. Collectively these differences strongly support the coupling of an electrogenic H+/K+ -exchanging ATPase to an OH/Pi antiporter in corn root tissue.  相似文献   

13.
Summary Several cationic dyes were found to behave as inhibitors of K+ uptake in yeast. When added at high concentrations or in a K+-free medium, dyes can also produce and efflux of K+. The dyes are taken up by the cells in a process that, in different degrees, for several cations requires glucose and is inhibited to a higher degree by K+ than by Na+.The inhibition of cation uptake is of the competitive type with EB and close to this type with other dyes. Ca2+ inhibits the uptake and effects of dyes and in some cases also seems to change the inhibition kinetics on Rb+ uptake closer to a pure competitive type.According to preliminary experiments, the efflux of K+ seems to be of the electrogenic type, and not due to the disruption of the cells. The data indicate that, independently of the existence of other types of interaction (which do exist), dyes seem to interact with the system for monovalent cation uptake of yeast in different degrees of specificity and energy requirement. This interaction can be followed by fluorescence or metachromatic changes or reduction of the dyes as observed in the dual wavelength spectrophotometer and can be inhibited specifically by K+, but not by Na+.  相似文献   

14.
Lysolecithin treatment of electron transport particles (ETP) generated non-vesicular fragments of membrane that can catalyze oxidative phosphorylation. Electron micrographs of ultrathin sections of lysolecithin treated ETP were devoid of circular patterns characteristic of closed vesicular structures. No synergistic uncoupling of oxidative phosphorylation by valinomycin plus nigericin in the presence of K+ was observed in such fragments of membrane, which remained sensitive to classical uncouplers and to oligomycin. Preceding total destruction of closed vesicular structure, lysolecithin caused a drastic alteration in the membrane as evidenced by a greatly diminished effect of the ionophores in releasing respiratory control.  相似文献   

15.
Stimulation of K+ efflux from non-metabolizing yeast cells by 2,4-dinitrophenol or by salicylic acid occurs only after accumulation of the compounds into the cells, indicating that the site of action of the uncouplers is inside the cells. A correlation is found between the partition ratio of the lipophilic cation dibenzyldimethylammonium between cells and medium and the rate of K+ efflux.  相似文献   

16.
Effects of the ionophore A23187 on isolated broken and intact chloroplasts in the pH range of 6.2 to 7.6 have been studied. In both types of chloroplasts, uncoupling of photosynthetic electron transport by A23187 (6–10 μm) was mediated either by Mg2+ or—in the absence of divalent cations (i.e., when EDTA was added to the medium)—by high concentrations of Na+, but not of K+ ions. At increased concentrations of the ionophore (above about 10 μm) and high pH (7.2 to 7.6), uncoupling in broken chloroplasts was also mediated by K+ ions. The inhibition of the energy-dependent slow decline of chlorophyll fluorescence in intact chloroplasts by the ionophore (which denotes uncoupling) is reversed by EDTA in the presence of K+, but not of Na+ ions. In 3-(3′,4′-dichlorophenyl)1,1-dimethylurea-poisoned intact chloroplasts, the yield of variable chlorophyll fluorescence is lowered by A23187 + EDTA and increased again by addition of NaCl or KCl. Chlorophyll fluorescence spectra at 77 °K of intact chloroplasts incubated with A23187 + EDTA indicated that the distribution of excitation energy had changed in favor of photosystem I, as expected from a depletion of Mg2+. This change was reversed by MgCl2+, KCl, or NaCl. From a comparison of low-temperature fluorescence spectra of broken and intact chloroplasts at different levels of Mg2+ in the medium, the concentration of free Mg2+ in the stroma of the intact chloroplasts at pH 7.6 in the dark was estimated at 1 to 4 mm. The results show that in chloroplasts the specificity of A23187 for divalent cations is limited. In the presence of EDTA, the ionophore mediates fast Na+H+ exchange across thylakoid membranes, whereas K+ is transferred much less efficiently. Both Na+ and K+ ions seem to be transported readily across the chloroplast envelope by the action of the ionophore, leading to an exchange of Mg2+ for monovalent cations at the thylakoid membrane surfaces in intact chloroplasts.  相似文献   

17.
The effect of pH on electrogenic sodium transport by the Na+,K+-ATPase has been studied. Experiments were carried out by admittance recording in a model system consisting of a bilayer lipid membrane with adsorbed membrane fragments containing purified Na+,K+-ATPase. Changes in the membrane admittance (capacitance and conductance increments in response to photo-induced release of ATP from caged ATP) were measured as function of AC voltage frequency, sodium ion concentration, and pH. In solutions containing 150 mM Na+, the frequency dependence of capacitance increments was not significantly dependent on pH in the range between 6 and 8. At a low NaCl concentration (3 mM), the capacitance increments at low frequencies decreased with the increasing pH. In the absence of NaCl, the frequency-dependent capacitance increment at low frequencies was similar to that measured in the presence of 3 mM NaCl. These results may be explained by involvement of protons in the Na+,K+-ATPase pump cycle, i.e., electroneutral exchange of sodium ions for protons under physiological conditions, electrogenic transport of sodium ions at high pH, and electrogenic transport of protons at low concentrations (and in the absence) of sodium ions.  相似文献   

18.
Summary Addition of the polyene antibiotic filipin (50 m) to the outside bathing solution (OBS) of the isolated frog skin resulted in a highly significant active outward transport of K+ because filipinper se increases the nonspecific Na+ and K+ permeability of the outward facing membrane. The K+ transport was calculated from the chemically determined changes in K+ concentrations in the solution bathing the two sides of the skin. The active transepithelial K+ transport required the presence of Na+ in the OBS, but not in the inside bathing solution (IBS), and it was inhibited by the Na+, K+-ATPase inhibitor ouabain. The addition of Ba++ to the IBS in the presence of filipin in the OBS resulted in an activation of the transepithelial K+ transport and in an inhibition of the active Na+ transport. This is in agreement with the notion that Ba++ decreases the passive K+ permeability of the inward facing membrane. In the presence of amiloride (which blocks the specific Na permeability of the outward facing membrane) and Ba++ there was a good correlation between the active Na+ and K+ transport. It is concluded that the active transepithelial K+ transport is carried out by a coupled electrogenic Na–K pump, and it is suggested that the pump ratio (Na/K) is 1.5.  相似文献   

19.
The rate of change of internal pH and transmembrane potential has been monitored in liposomes following the external addition of various cation salts. Oleic acid increases the transmembrane movement of H+ following the imposition of a K+ gradient. An initial fast change in internal pH is seen followed by a slower rate of alkalinization. High concentrations of the fatty acid enhance the rate comparable to that seen in the presence of nigericin in contrast to the effect of FCCP (carbonyl cyanide p-(tri-fluoromethoxy)phenyl hydrazone) which saturates at an intermediate value. The ability of nonesterified fatty acids to catalyze the movement of cations across the liposome membrane increases with the degree of unsaturation and decreases with increasing chain length. Li and Na salts cause a similar initial fast pH change but have less effect on the subsequent slower rate. Similarly, the main effect of divalent cation salts is on the initial fast change. The membrane potential can enhance or inhibit cation transport depending on its polarity with respect to the cation gradient. It is concluded that nonesterified fatty acids have the capability to complex with, and transport, a variety of cations across phospholipid bilayers. However, they do not act simply as proton/cation exchangers analogous to nigericin nor as protonophores analogous to FCCP. The full cycle of ionophoric action involves a combination of both functions.The authors would like to thank P. Nicholts (Brock University, Canada) for helpful discussions. M.A.S. received a Science and Engineering Research Council studentship and C.E.C. acknowledges the award of a King's College London fellowship followed by a Medical Research Council Training Fellowship.  相似文献   

20.
Abstract

Any electrogenic ion-pump carrying a net-current during turnover is an electromotive device creating a transmembrane potential in tight vesicles, which can be detected by the potential sensitive fluorochrome oxonol VI. For the Na+,K+-ATPase the coupling ratio Na+:K+:ATP during physiological Na+:K+-exchange is 3:2:1, giving one positive net-charge translocated per ATP split. The same stoichiometry is found for the electrogenic Na+:Na+-exchange, whereas during uncoupled Na+-efflux this net-charge stoichiometry changes to three, in accordance with a transport stoichiometry 3:0:1. By inducing internal electrostatic potentials in the proteoliposome bilayer using the hydrophobic ions TPB or TPP+ it could be shown that the backreaction which normally translocates K+ changes from electroneutral to electrogenic during the uncoupled Na+-efflux where no ions are returned.

For Ca2+-transport a stoichiometry of close to, but lower than 2 Ca2+-ions per ATP split is found. Recent findings indicate that protons may be exchanged during this transport, but it was uncertain if this proton transport took place primarily on the Ca2+-pump, or was a secondary consequence of the established membrane pump-potential. Using the pH-sensitive fluorescent probe pyranine we have investigated these questions by measurements of generated proton gradients associated with Ca -pump turnover during conditions where the pump potential is short-circuited. From this it can be concluded that protons are countertransported during Ca2+-transport, but the stoichiometry apparently varies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号